7 research outputs found

    Protein kinase C zeta plays an essential role for Mycobacterium tuberculosis-induced extracellular signal-regulated kinase 1/2 activation in monocytes/macrophages via Toll-like receptor 2.

    No full text
    This study characterized the upstream signalling molecules involved in extracellular signal-regulated kinase (ERK) 1/2 activation and determined their effects on differential tumour necrosis factor (TNF)-alpha expression by monocytes/macrophages infected with virulent or avirulent mycobacteria. The avirulent Mycobacterium tuberculosis (MTB) strain H37Ra (MTBRa) induced higher levels of activation of ERK 1/2 and the upstream MAPK kinase (MEK)1 and, subsequently, higher levels of TNF-alpha expression in human primary monocytes and monocyte-derived macrophages, as compared with MTB strain H37Rv (MTBRv). The MTB-induced activation of ERK 1/2 was not dependent on Ras or Raf. However, inhibition of the activity of atypical protein kinase C (PKC) zeta decreased the in vitro phosphorylation of MEK, ERK 1/2 activation and subsequent TNF-alpha induction caused by MTBRv or MTBRa. Toll-like receptor (TLR) 2 was found to play a major role in MTB-induced TNF-alpha expression and PKCzeta phosphorylation. Co-immunoprecipitation experiments showed that PKCzeta interacts physically with TLR2 after MTB stimulation. Moreover, PKCzeta phosphorylation was increased more in macrophages following MTBRa, versus MTBRv, infection. This is the first demonstration that PKCzeta interacts with TLR2 to play an essential role in MTB-induced ERK 1/2 activation and subsequent TNF-alpha expression in monocytes/macrophages

    Virulence Attenuation of a UDP-galactose/ N-acetylglucosamine β1,4 Galactosyltransferase Expressing Leishmania donovani Promastigote

    No full text
    Protozoan parasites of the genus Leishmania are the causative agent of leishmaniasis, a disease whose manifestations in humans range from mild cutaneous lesions to fatal visceral infections. Human visceral leishmaniasis is caused by Leishmania donovani. Long-term culture in vitro leads to the attenuation of the parasite. This loss of parasite virulence is associated with the expression of a developmentally regulated UDP-Galactose/N-acetylglucosamine β 1–4 galactosyltransferase and galactose terminal glycoconjugates as determined by their agglutination with the pea nut agglutinin (PNA). Thus, all promastigotes passaged for more than 11 times were 100% agglutinated with PNA, and represent a homogeneous population of avirulent parasites. Identical concentrations of PNA failed to agglutinate promastigotes passaged for ≤5 times. These PNA− promastigotes were virulent. Promastigotes passaged from 5 to 10 times showed a mixed population. The identity of populations defined by virulence and PNA agglutination was confirmed by isolating PNA+ avirulent and PNA− virulent clones from the 7th passage promastigotes. Only the PNA+ clones triggered macrophage microbicidal activity. The PNA+ clones lacked lipophosphoglycan. Intravenous administration of [14C] galactose-labeled parasite in BALB/c mice resulted in rapid clearance of the parasite from blood with a concomitant accumulation in the liver. By enzymatic assay and RT-PCR we have shown the association of a UDP-Galactose/Nacetylglucosamine β1,4 galactosyltransferase with only the attenuated clones. By immunofluorescence we demonstrated that the enzyme is located in the Golgi apparatus. By western blot analysis and SDS-PAGE of the affinitypurified protein, we have been able to identify a 29 KDa galactose terminal protein from the avirulent clones

    Mycobacterium tuberculosis: Strategies of offense and defense

    No full text

    Prostatakarzinom

    No full text
    corecore