1,183 research outputs found

    A Systematic Analysis of the Lepton Polarization Asymmetries in the Rare B Decay, B -> X_s\tau^+\tau^-

    Full text link
    The most general model-independent analysis of the lepton polarization asymmetries in the rare B decay, \Bstt, is presented. We present the longitudinal, normal and transverse polarization asymmetries for the τ+\tau^+ and τ−\tau^-, and combinations of them, as functions of the Wilson coefficients of twelve independent four-Fermi interactions, ten of them local and two nonlocal. These procedures will tell us which type of operators contributes to the process. And it will be very useful to pin down new physics systematically, once we have the experimental data with high statistics and a deviation from the Standard Model is found.Comment: 24 pages, 8 figures, LaTe

    Regular black hole in three dimensions

    Full text link
    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.Comment: 15 pages, 16 figures, 3D noncommutative black hole included as Sec 4, a version to appear in EPJ

    Thermodynamics and evaporation of the noncommutative black hole

    Full text link
    We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.Comment: 16 pages, 6 figures, added references, to appear in JHE

    The g-2 of the Muon in Localized Gravity Models

    Get PDF
    The (g-2) of the muon is well known to be an important model building constraint on theories beyond the Standard Model. In this paper, we examine the contributions to (g−2)μ(g-2)_\mu arising in the Randall-Sundrum model of localized gravity for the case where the Standard Model gauge fields and fermions are both in the bulk. Using the current experimental world average measurement for (g−2)μ(g-2)_\mu, we find that strong constraints can be placed on the mass of the lightest gauge Kaluza-Klein excitation for a narrow part of the allowed range of the assumed universal 5-dimensional fermion mass parameter, ν\nu. However, employing both perturbativity and fine-tuning constraints we find that we can further restrict the allowed range of the parameter ν\nu to only one fourth of its previous size. The scenario with the SM in the RS bulk is thus tightly constrained, being viable for only a small region of the parameter space.Comment: 16 pages, 2 figs, LaTex, Additional discussion adde

    Non-Functional Requirements Elicitation and Incorporation into Class Diagrams

    Full text link

    Experimental Probes of Localized Gravity: On and Off the Wall

    Get PDF
    The phenomenology of the Randall-Sundrum model of localized gravity is analyzed in detail for the two scenarios where the Standard Model (SM) gauge and matter fields are either confined to a TeV scale 3-brane or may propagate in a slice of five dimensional anti-deSitter space. In the latter instance, we derive the interactions of the graviton, gauge, and fermion Kaluza-Klein (KK) states. The resulting phenomenological signatures are shown to be highly dependent on the value of the 5-dimensional fermion mass and differ substantially from the case where the SM fields lie on the TeV-brane. In both scenarios, we examine the collider signatures for direct production of the graviton and gauge KK towers as well as their induced contributions to precision electroweak observables. These direct and indirect signatures are found to play a complementary role in the exploration of the model parameter space. In the case where the SM field content resides on the TeV-brane, we show that the LHC can probe the full parameter space and hence will either discover or exclude this model if the scale of electroweak physics on the 3-brane is less than 10 TeV. We also show that spontaneous electroweak symmetry breaking of the SM must take place on the TeV-brane.Comment: 62 pages, Latex, 22 figure

    Lepton Polarization and Forward-Backward Asymmetries in b -> s tau+ tau-

    Get PDF
    We study the spin polarizations of both tau leptons in the decay b -> s tau+ tau-. In addition to the polarization asymmetries involving a single tau, we construct asymmetries for the case where both polarizations are simultaneously measured. We also study forward-backward asymmetries with polarized tau's. We find that a large number of asymmetries are predicted to be large, >~ 10%. This permits the measurement of all Wilson coefficients and the b-quark mass, thus allowing the standard model (SM) to be exhaustively tested. Furthermore, there are many unique signals for the presence of new physics. For example, asymmetries involving triple-product correlations are predicted to be tiny within the SM, O(10^{-2}). Their observation would be a clear signal of new physics.Comment: 21 pages, LaTeX, 4 figures (included). Paper somewhat reorganized, references greatly expanded, conclusions unchange

    Influence of Carbon Concentration on the Superconductivity in MgCxNi3

    Full text link
    The influence of carbon concentration on the superconductivity (SC) in MgCx_{x}Ni3_3 has been investigated by measuring the low temperature specific heat combined with first principles electronic structure calculation. It is found that the specific heat coefficient γn=Cen/T\gamma_n=C_{en}/T of the superconducting sample (x≈1x\approx1) in normal state is twice that of the non-superconducting one (x≈0.85x\approx 0.85). The comparison of measured γn\gamma_n and the calculated electronic density of states (DOS) shows that the effective mass renormalization changes remarkably as the carbon concentration changes. The large mass renormalization for the superconducting sample and the low TcT_{c}(7K) indicate that more than one kind of boson mediated electron-electron interactions exist in MgCx_{x}Ni3_3.Comment: 4 pages, 4 figure
    • …
    corecore