31 research outputs found

    Extracting W Boson Couplings from the e+e−e^{+}e^{-} Production of Four Leptons

    Full text link
    We consider the processes e+e−→ℓ+ℓâ€Č−ΜΜˉâ€Če^{+}e^{-}\rightarrow \ell^{+} \ell^{\prime -}\nu \bar{\nu}^{\prime}, including all possible charged lepton combinations, with regard to measuring parameters characterizing the WW boson. We calculate at what level these processes can be used to measure anamolous triple-boson vertice coupling parameters for the cases of e+e−e^{+}e^{-} colliders at 500 GeVGeV and 1 TeVTeV center of mass energies.Comment: 13 pages,OCIP/C-93-

    On the Formation Height of the SDO/HMI Fe 6173 Doppler Signal

    Full text link
    The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) is designed to study oscillations and the mag- netic field in the solar photosphere. It observes the full solar disk in the Fe I absorption line at 6173\AA . We use the output of a high-resolution 3D, time- dependent, radiation-hydrodynamic simulation based on the CO5BOLD code to calculate profiles F({\lambda},x,y,t) for the Fe I 6173{\AA} line. The emerging profiles F({\lambda},x,y,t) are multiplied by a representative set of HMI filter transmission profiles R_i({\lambda},1 \leq i \leq 6) and filtergrams I_i(x,y,t;1 \leq i \leq 6) are constructed for six wavelengths. Doppler velocities V_HMI(x,y,t) are determined from these filtergrams using a simplified version of the HMI pipeline. The Doppler velocities are correlated with the original velocities in the simulated atmosphere. The cross- correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal is formed rather low in the solar atmosphere. The same analysis is performed for the SOHO/MDI Ni I line at 6768\AA . The MDI Doppler signal is formed slightly higher at around 125 km. Taking into account the limited spatial resolution of the instruments, the apparent formation height of both the HMI and MDI Doppler signal increases by 40 to 50 km. We also study how uncertainties in the HMI filter-transmission profiles affect the calculated velocities.Comment: 15 pages, 11 Figure

    Electroweak radiative corrections to the three channels of the process f_1 bar-f_1 ZA --> 0

    Full text link
    We have calculated the electroweak radiative corrections at the O(alpha) level to the three channels of the process f_1 bar-f_1 Z A --> 0 and implemented them into the SANC system. Here A stands for the photon and f_1 for a first generation fermion whose mass is neglected everywhere except in arguments of logarithmic functions. The symbol --> 0 means that 4-momenta of all the external particles flow inwards. We present the complete analytical results for the covariant and helicity amplitudes for three cross channels: f_1 + bar-f_1 --> Z + gamma, Z --> f_1 + bar-f_1 + gamma and f_1 + gamma --> f_1 + Z. The one-loop scalar form factors of these channels are simply related by an appropriate permutation of their arguments s,t,u. To check the correctness of our results we first of all observe the independence of the scalar form factors on the gauge parameters and the validity of the Ward identity, i.e. external photon transversality, and, secondly, compare our numerical results with the other independent calculations available to us.Comment: 19 pages, 6 figures, 10 table

    VFISV: Very Fast Inversion of the Stokes Vector for the Helioseismic and Magnetic Imager

    Full text link
    In this paper we describe in detail the implementation and main properties of a new inversion code for the polarized radiative transfer equation (VFISV: Very Fast inversion of the Stokes vector). VFISV will routinely analyze pipeline data from the Helioseismic and Magnetic Imager (HMI) on-board of the Solar Dynamics Observatory (SDO). It will provide full-disk maps (4096×\times4096 pixels) of the magnetic field vector on the Solar Photosphere every 10 minutes. For this reason VFISV is optimized to achieve an inversion speed that will allow it to invert 16 million pixels every 10 minutes with a modest number (approx. 50) of CPUs. Here we focus on describing a number of important details, simplifications and tweaks that have allowed us to significantly speed up the inversion process. We also give details on tests performed with data from the spectropolarimeter on-board of the Hinode spacecraft.Comment: 23 pages, 9 figures (2 color). Submitted for publication to Solar Physic

    Aspects of the dynamics of colloidal suspensions: Further results of the mode-coupling theory of structural relaxation

    Full text link
    Results of the idealized mode-coupling theory for the structural relaxation in suspensions of hard-sphere colloidal particles are presented and discussed with regard to recent light scattering experiments. The structural relaxation becomes non-diffusive for long times, contrary to the expectation based on the de Gennes narrowing concept. A semi-quantitative connection of the wave vector dependences of the relaxation times and amplitudes of the final α\alpha-relaxation explains the approximate scaling observed by Segr{\`e} and Pusey [Phys. Rev. Lett. {\bf 77}, 771 (1996)]. Asymptotic expansions lead to a qualitative understanding of density dependences in generalized Stokes-Einstein relations. This relation is also generalized to non-zero frequencies thereby yielding support for a reasoning by Mason and Weitz [Phys. Rev. Lett {\bf 74}, 1250 (1995)]. The dynamics transient to the structural relaxation is discussed with models incorporating short-time diffusion and hydrodynamic interactions for short times.Comment: 11 pages, 9 figures; to be published in Phys. Rev.

    Differential Cross Section for Higgs Boson Production Including All-Orders Soft Gluon Resummation

    Full text link
    The transverse momentum QTQ_T distribution is computed for inclusive Higgs boson production at the energy of the CERN Large Hadron Collider. We focus on the dominant gluon-gluon subprocess in perturbative quantum chromodynamics and incorporate contributions from the quark-gluon and quark-antiquark channels. Using an impact-parameter bb-space formalism, we include all-orders resummation of large logarithms associated with emission of soft gluons. Our resummed results merge smoothly at large QTQ_T with the fixed-order expectations in perturbative quantum chromodynamics, as they should, with no need for a matching procedure. They show a high degree of stability with respect to variation of parameters associated with the non-perturbative input at low QTQ_T. We provide distributions dσ/dydQTd\sigma/dy dQ_T for Higgs boson masses from MZM_Z to 200 GeV. The average transverse momentum at zero rapidity yy grows approximately linearly with mass of the Higgs boson over the range MZ<mh≃0.18mh+18M_Z < m_h \simeq 0.18 m_h + 18 ~GeV. We provide analogous results for ZZ boson production, for which we compute ≃25 \simeq 25 GeV. The harder transverse momentum distribution for the Higgs boson arises because there is more soft gluon radiation in Higgs boson production than in ZZ production.Comment: 42 pages, latex, 26 figures. All figures replaced. Some changes in wording. Published in Phys. Rev. D67, 034026 (2003

    Higgs Boson Decay into Hadronic Jets

    Full text link
    The remarkable agreement of electroweak data with standard model (SM) predictions motivates the study of extensions of the SM in which the Higgs boson is light and couples in a standard way to the weak gauge bosons. Postulated new light particles should have small couplings to the gauge bosons. Within this context it is natural to assume that the branching fractions of the light SM-like Higgs boson mimic those in the standard model. This assumption may be unwarranted, however, if there are non-standard light particles coupled weakly to the gauge bosons but strongly to the Higgs field. In particular, the Higgs boson may effectively decay into hadronic jets, possibly without important bottom or charm flavor content. As an example, we present a simple extension of the SM, in which the predominant decay of the Higgs boson occurs into a pair of light bottom squarks that, in turn, manifest themselves as hadronic jets. Discovery of the Higgs boson remains possible at an electron-positron linear collider, but prospects at hadron colliders are diminished substantially.Comment: 30 pages, 7 figure

    QCD Corrections and Non-standard Three Vector Boson Couplings in W+W−W^+W^- Production at Hadron Colliders

    Get PDF
    The process p\,p\hskip-7pt\hbox{^{^{(\!-\!)}}} \rightarrow W^{+} W^{-} + X \rightarrow \ell^+_1 \nu_1 \ell^-_2 \bar \nu_2 + X is calculated to O(αs){\cal O}(\alpha_s) for general CC and PP conserving WWVWWV couplings (V=Îł, ZV=\gamma,\, Z). The prospects for probing the WWVWWV couplings in this reaction are explored. The impact of O(αs){\cal O}(\alpha_s) QCD corrections and various background processes on the observability of non-standard WWVWWV couplings in W+W−W^+ W^- production at the Tevatron and the Large Hadron Collider (LHC) is discussed in detail. Sensitivity limits for anomalous WWVWWV couplings are derived at next-to-leading order for the Tevatron and LHC center of mass energies, and are compared to the bounds which can be achieved in other processes. Unless a jet veto or a cut on the total transverse momentum of the hadrons in the event is imposed, the O(αs){\cal O}(\alpha_s) QCD corrections and the background from top quark production decrease the sensitivity of p\,p\hskip-7pt\hbox{^{^{(\!-\!)}}} \rightarrow W^{+} W^{-} + X \rightarrow \ell^+_1 \nu_1 \ell^-_2 \bar \nu_2 + X to anomalous WWVWWV couplings by a factor two to five.Comment: REVTEX 3, 62 pages, 21 Figures (not included available upon request), the postscript file of the complete paper is available at ftp://ucdhep.ucdavis.edu/han/ww/ww_paper.p

    Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present final searches of the anomalous gammaWW and ZWW trilinear gauge boson couplings from WW and WZ production using lepton plus dijet final states and a combination with results from Wgamma, WW, and WZ production with leptonic final states. The analyzed data correspond to up to 8.6/fb of integrated luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96 TeV. We set the most stringent limits at a hadron collider to date assuming two different relations between the anomalous coupling parameters Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2 TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154, -0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization, and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings parameterization. We also present the most stringent limits of the W boson magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL

    Ï”â€Č/Ï”\epsilon'/\epsilon And Anomalous Gauge Boson Couplings

    Full text link
    We study Ï”â€Č/Ï”\epsilon'/\epsilon in the Standard Model and Ï”â€Č/Ï”\epsilon'/\epsilon due to anomalous WWÎłWW\gamma and WWZWWZ interactions %using recent result on the top quark mass from CDF. as a function of the top quark mass. In the Standard Model, Ï”â€Č/Ï”\epsilon'/\epsilon is in the range 10−3∌10−410^{-3} \sim 10^{-4} for the central value of top quark mass reported by CDF. The anomalous gauge couplings can have large contributions to the CPCP violating I=2I=2 amplitude in K→ππK \rightarrow \pi\pi. Within the allowed regions for the anomalous gauge couplings, Ï”â€Č/Ï”\epsilon'/\epsilon can be dramatically different from the standard model prediction.Comment: 17 pages plus one figure (available from the author upon request), Revtex, OITS-541, UM-P-94/4
    corecore