22 research outputs found

    Export from Pericentriolar Endocytic Recycling Compartment to Cell Surface Depends on Stable, Detyrosinated (Glu) Microtubules and Kinesin

    No full text
    A significant fraction of internalized transferrin (Tf) concentrates in the endocytic recycling compartment (ERC), which is near the microtubule-organizing center in many cell types. Tf then recycles back to the cell surface. The mechanisms controlling the localization, morphology, and function of the ERC are not fully understood. We examined the relationship of Tf trafficking with microtubules (MTs), specifically the subset of stable, detyrosinated Glu MTs. We found some correlation between the level of stable Glu MTs and the distribution of the ERC; in cells with low levels of Glu MTs concentrated near to the centriole, the ERC was often tightly clustered, whereas in cells with higher levels of Glu MTs throughout the cell, the ERC was more dispersed. The clustered ERC in Chinese hamster ovary cells became dispersed when the level of Glu MTs was increased with taxol treatment. Furthermore, in a temperature-sensitive Chinese hamster ovary cell line (B104-5), the cells had more Glu MTs when the ERC became dispersed at elevated temperature. Microinjecting purified anti-Glu tubulin antibody into B104-5 cells at elevated temperature induced the redistribution of the ERC to a tight cluster. Microinjection of anti-Glu tubulin antibody slowed recycling of Tf to the cell surface without affecting Tf internalization or delivery to the ERC. Similar inhibition of Tf recycling was caused by microinjecting anti-kinesin antibody. These results suggest that stable Glu MTs and kinesin play a role in the organization of the ERC and in facilitating movement of vesicles from the ERC to the cell surface

    Microtubule Asymmetry during Neutrophil Polarization and Migration

    No full text
    The development of cell polarity in response to chemoattractant stimulation in human polymorphonuclear neutrophils (PMNs) is characterized by the rapid conversion from round to polarized morphology with a leading lamellipod at the front and a uropod at the rear. During PMN polarization, the microtubule (MT) array undergoes a dramatic reorientation toward the uropod that is maintained during motility and does not require large-scale MT disassembly or cell adhesion to the substratum. MTs are excluded from the leading lamella during polarization and motility, but treatment with a myosin light chain kinase inhibitor (ML-7) or the actin-disrupting drug cytochalasin D causes an expansion of the MT array and penetration of MTs into the lamellipod. Depolymerization of the MT array before stimulation caused 10% of the cells to lose their polarity by extending two opposing lateral lamellipodia. These multipolar cells showed altered localization of a leading lamella-specific marker, talin, and a uropod-specific marker, CD44. In summary, these results indicate that F-actin– and myosin II-dependent forces lead to the development and maintenance of MT asymmetry that may act to reinforce cell polarity during PMN migration
    corecore