411 research outputs found
Distinct Frontal Networks Are Involved in Adapting to Internally and Externally Signaled Errors
Errors trigger changes in behavior that help individuals adapt to new situations. The dorsal anterior cingulate cortex (dACC) is thought to be central to this response, but more lateral frontal regions are also activated by errors and may make distinct contributions. We investigated error processing by studying 2 distinct error types: commission and timing. Thirty-five subjects performed a version of the Simon Task designed to produce large number of errors. Commission errors were internally recognized and were not accompanied by explicit feedback. In contrast, timing errors were difficult to monitor internally and were explicitly signaled. Both types of error triggered changes in behavior consistent with increased cognitive control. As expected, robust activation within the dACC and bilateral anterior insulae (the Salience Network) was seen for commission errors. In contrast, timing errors were not associated with activation of this network but did activate a bilateral network that included the right ventral attentional system. Common activation for both error types occurred within the pars operculari and angular gyri. These results show that the dACC does not respond to all behaviorally salient errors. Instead, the error-processing system is multifaceted, and control can be triggered independently of the dACC when feedback is unexpected
Nonlinear Realization of N=2 Superconformal Symmetry and Brane Effective Actions
Due to the incompatibility of the nonlinear realization of superconformal
symmetry and dilatation symmetry with the dilaton as the compensator field, in
the present paper it shows an alternative mechanism of spontaneous breaking the
N=2 superconformal symmetry to the N=0 case. By using the approach of nonlinear
transformations it is found that it leads to a space-filling brane theory with
Weyl scale W(1,3) symmetry. The dynamics of the resulting Weyl scale invariant
brane, along with that of other Nambu-Goldstone fields, is derived in terms of
the building blocks of the vierbein and the covariant derivative from the
Maurer-Cartan oneforms. A general coupling of the matter fields localized on
the brane world volume to these NG fields is also constructed.Comment: 22 pages, more references and comments are adde
The supercharge and superconformal symmetry for N=1 supersymmetric quantum mechanics
The superspace Lagrangian formulation of N=1 supersymmetric quantum mechanics
is presented. The general Lagrangian constructed out of chiral and antichiral
supercoordinates containing up to two derivatives and with a canonically
normalized kinetic energy term describes the motion of a nonrelativistic spin
1/2 particle with Land\'e g-factor 2 moving in two spatial dimensions under the
influence of a static but spatially dependent magnetic field. Noether's theorem
is derived for the general case and is used to construct superspace dependent
charges whose lowest components give the superconformal generators. The
supercoordinate of charges containing an R symmetry charge, the supersymmetry
charges and the Hamiltonian are combined to form a supercharge supercoordinate.
Superconformal Ward identities for the quantum effective action are derived
from the conservation equations and the source of potential symmetry breaking
terms are identified.Comment: 59 pages, LaTe
Wilson Renormalization Group Analysis of Theories with Scalars and Fermions
The continuous block spin (Wilson) renormalization group equation governing
the scale dependence of the action is constructed for theories containing
scalars and fermions. A locally approximated form of this equation detailing
the structure of a generalized effective potential is numerically analyzed. The
role of the irrelevant operators in the nonperturbative renormalization group
running is elucidated and a comparison with the 1-loop perturbative results is
drawn. Focusing on the spontaneously broken phase of a model possessing a
discrete symmetry forbidding an explicit fermion mass term, mass bounds on both
the scalar and fermion degrees of freedom are established. The effect of the
generalized Yukawa coupling on the scalar mass upper bound is emphasized.Comment: 40, PURD-TH-92-
Recommended from our members
Multi-lingual and multi-cultural information literacy; perspectives, models and good practice
Purpose
This paper reviews current approaches to, and good practice, in information literacy development in multi-lingual and multi-cultural settings, with particular emphasis on provision for international students.
Design/methodology/approach
A selective and critical review of published literature is extended by evaluation of examples of multi-lingual information literacy tutorials and MOOCs.
Findings
Multi-lingual and multi-cultural information literacy are umbrella terms covering a variety of situations and issues. This provision is of increasing importance in an increasingly mobile and multi-cultural world. This article evaluates current approaches and good practice, focusing on issues of culture vis a vis language, the balance between individual and group needs, specific and generic information literacy instruction, and models for information literacy, pedagogy and culture. Recommendations for good practice and for further research are given,
Originality/value
This is one of very few articles critically reviewing how information literacy development is affected by linguistic and cultural factors
Preliminary study of the oral mycobiome of children with and without dental caries
Children’s oral health is in a dire state, with dental decay (caries) being one of the most common chronic diseases. While the role of bacteria in the oral microbiome and dental caries is established, the contribution of fungi is relatively unknown. We assessed the oral mycobiome in childhood (n = 17), to determine if the composition of fungi varies between children with and without caries. Oral mycobiome composition was assessed by using Illumina MiSeq to sequence the ITS2 region, which was amplified from dental plaque. This revealed that the oral mycobiome in the investigated children contained 46 fungal species. Candida albicans was the most abundant species and was ubiquitous in all samples, indicating this species may not be involved in caries development as previously suggested. While the overall diversity of fungi was similar, independent of caries status (p > 0.05), we found caries influenced the abundance of specific fungi. Children without caries had a significantly higher abundance of 17 species compared to children with caries, which had three enriched species (p < 0.001). While the differentially abundant species between health and caries may be specific to an Australian population, our findings indicate the mycobiome plays a role in oral health.Jacquelyn M. Fechney, Gina V. Browne, Neeta Prabhu, Laszlo Irinyi, Wieland Meyer, Toby Hughes, Michelle Bockmann, Grant Townsend, Hanieh Salehi and Christina J. Adle
Probing Lorentz and CPT violation with space-based experiments
Space-based experiments offer sensitivity to numerous unmeasured effects
involving Lorentz and CPT violation. We provide a classification of clock
sensitivities and present explicit expressions for time variations arising in
such experiments from nonzero coefficients in the Lorentz- and CPT-violating
Standard-Model Extension.Comment: 15 page
CPT, T, and Lorentz Violation in Neutral-Meson Oscillations
Tests of CPT and Lorentz symmetry using neutral-meson oscillations are
studied within a formalism that allows for indirect CPT and T violation of
arbitrary size and is independent of phase conventions. The analysis is
particularly appropriate for studies of CPT and T violation in oscillations of
the heavy neutral mesons D, B_d, and B_s. The general Lorentz- and CPT-breaking
standard-model extension is used to derive an expression for the parameter for
CPT violation. It varies in a prescribed way with the magnitude and orientation
of the meson momentum and consequently also with sidereal time. Decay
probabilities are presented for both uncorrelated and correlated mesons, and
some implications for experiments are discussed.Comment: 11 pages, references added, accepted in Physical Review
Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope
Nearby clusters and groups of galaxies are potentially bright sources of
high-energy gamma-ray emission resulting from the pair-annihilation of dark
matter particles. However, no significant gamma-ray emission has been detected
so far from clusters in the first 11 months of observations with the Fermi
Large Area Telescope. We interpret this non-detection in terms of constraints
on dark matter particle properties. In particular for leptonic annihilation
final states and particle masses greater than ~200 GeV, gamma-ray emission from
inverse Compton scattering of CMB photons is expected to dominate the dark
matter annihilation signal from clusters, and our gamma-ray limits exclude
large regions of the parameter space that would give a good fit to the recent
anomalous Pamela and Fermi-LAT electron-positron measurements. We also present
constraints on the annihilation of more standard dark matter candidates, such
as the lightest neutralino of supersymmetric models. The constraints are
particularly strong when including the fact that clusters are known to contain
substructure at least on galaxy scales, increasing the expected gamma-ray flux
by a factor of ~5 over a smooth-halo assumption. We also explore the effect of
uncertainties in cluster dark matter density profiles, finding a systematic
uncertainty in the constraints of roughly a factor of two, but similar overall
conclusions. In this work, we focus on deriving limits on dark matter models; a
more general consideration of the Fermi-LAT data on clusters and clusters as
gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo,
minor revisions to be consistent with accepted versio
Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2
We have measured the spin structure functions g2p and g2d and the virtual
photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0
< Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons
from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is
significantly smaller than the sqrt{R} positivity limit over the measured
range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We
obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The
Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range
0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl
- …