53 research outputs found

    A preliminary study of buoyancy behaviour in Avicennia marina propagules

    Get PDF
    Propagules of A. marina (Forssk.) Vierh. were shown to be either ‘sinkers’, i.e. sink on shedding their pericarp, or ‘floaters’ i.e. remain buoyant after shedding their pericarp. While propagules from different estuaries showed big variations in buoyancy, generally mangroves in the north produced a high proportion of ‘floaters’ while those in the south produced mainly ‘sinkers’. The buoyancy of propagules appeared to be determined by the relative densities of the different parts of the cotyledons. Anatomical sections revealed that there was little difference between the different parts of ‘sinkers’, whereas in ‘floaters’ parts which were buoyant had a high proportion of intercellular air spaces and those which sank had closely- packed cells high in reserves. Some of the ‘sinkers’ were found to become buoyant after a period of submersion, although propagules from all estuaries did not behave in this way. Apparently those propagules which had a density close to that of sea water tended to become buoyant later and it was suggested that utilization of reserves reduced the original density to a level which enabled these propagules to float. The implications of variations in buoyancy of A. marina propagules for the further distribution of this mangrove along the southeast Cape coast are discussed

    Litter production by mangroves. III. Wavecrest (Transkei) with predictions for other Transkei estuaries

    Get PDF
    Litter fall was measured in a mixed mangrove community in which Avicennia marina (Forssk.) Vierh. was dominant over Bruguiera gymnorrhiza (L.) Lam. Mean litter production was 1.24g dry matter m-2 day-1 or 4.51 tons ha-1 yr-1 over a 3-year period. Mean annual leaf yield comprised approximately 72% of total litter. Generally greater leaf fall occurred in the summer than in the winter. In both A. marina and B. gymnorrhiza propagule production was variable from year to year. In both species, reproductive material was present on the trees almost throughout the year. This behaviour and the low litter yields appeared to indicate that the community is approaching its southern limits. From the 14ha of mangroves in the estuary it is calculated that total litter production is 50.7 tons yr-1, of which approximately 36.8 tons yr-1 is leaf litter. The total litter production of the larger stands of mangroves in Transkei’s estuaries was calculated. Mangrove litter is considered to provide a significant input to these systems

    Photosynthetic and respiratory responses of the mangrove-associated red algae, Bostrychia radicans and Caloglossa leprieurii

    Get PDF
    Net photosynthetic and respiratory rates of two estuarine algae, Bostrychia radicans Mont. and Caloglossa leprieurii (Mont.) J. Ag. collected from the Mgeni Estuary mangrove swamp, were studied. Both species are intertidal and common on Avicennia marina (Forssk.) Vierh. pneumatophores. Maximum photosynthetic rates of B. radicans were evident between 25% and 58% desiccation. Respiratory rates were constant up to 58% desiccation and decreased thereafter. C. leprieurii showed highest photosynthetic rates under submerged conditions, whilst respiratory rates were highest under saturated conditions. Both species showed increases in photosynthetic and respiratory rates with increase in temperature. Photosynthetic rates peaked at 32°C to 37°C, whilst respiratory rates peaked at 37°C. With increases in light intensity, maximum photosynthetic rates of C. leprieurii and B. radicans occurred at 140 to 225 μE m−2 s−1 and 225 to 550 μE m−2 s−1 respectively. Both species were tolerant of a range of salinities. The ecological implications of these results are discussed

    Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs

    Get PDF
    When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates ⪆100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index ≲2

    Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run

    Get PDF
    Advanced LIGO's second observing run (O2), conducted from 2016 November 30 to 2017 August 25, combined with Advanced Virgo's first observations in 2017 August, witnessed the birth of gravitational-wave multimessenger astronomy. The first ever gravitational-wave detection from the coalescence of two neutron stars, GW170817, and its gamma-ray counterpart, GRB 170817A, led to an electromagnetic follow-up of the event at an unprecedented scale. Several teams from across the world searched for EM/neutrino counterparts to GW170817, paving the way for the discovery of optical, X-ray, and radio counterparts. In this article, we describe the online identification of gravitational-wave transients and the distribution of gravitational-wave alerts by the LIGO and Virgo collaborations during O2. We also describe the gravitational-wave observables that were sent in the alerts to enable searches for their counterparts. Finally, we give an overview of the online candidate alerts shared with observing partners during O2. Alerts were issued for 14 candidates, 6 of which have been confirmed as gravitational-wave events associated with the merger of black holes or neutron stars. Of the 14 alerts, 8 were issued less than an hour after data acquisition

    Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

    Get PDF
    We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star–black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of 105,106,107Mpc3 for binary neutron star, neutron star–black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of 1-1+12(10-10+52) for binary neutron star mergers, of 0-0+19(1-1+91) for neutron star–black hole mergers, and 17-11+22(79-44+89) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers. © 2020, The Author(s)

    GW190521 : A Binary Black Hole Merger with a Total Mass of 150  M_{⊙}

    Get PDF
    On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85_{-14}^{+21}  M_{⊙} and 66_{-18}^{+17}  M_{⊙} (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65  M_{⊙}. We calculate the mass of the remnant to be 142_{-16}^{+28}  M_{⊙}, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3_{-2.6}^{+2.4}  Gpc, corresponding to a redshift of 0.82_{-0.34}^{+0.28}. The inferred rate of mergers similar to GW190521 is 0.13_{-0.11}^{+0.30}  Gpc^{-3} yr^{-1}

    GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

    Get PDF
    We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma™ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6-0.7+3.2 Mâ™ and 84.4-11.1+15.8 Mâ™ and range in distance between 320-110+120 and 2840-1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110-3840 Gpc-3 y-1 for binary neutron stars and 9.7-101 Gpc-3 y-1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc-3 y-1. © 2019 authors. Published by the American Physical Society

    Search for gravitational-wave signals associated with gamma-ray bursts during the second observing run of advanced LIGO and advanced Virgo

    Get PDF
    We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 × 10−6 (modeled) and 3.1 × 10−4 (unmodeled). We do not find any significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and therefore we report lower bounds on the distance to each of these, assuming various source types and signal morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for z ≤ 1. We estimate 0.07–1.80 joint detections with Fermi-GBM per year for the 2019–20 LIGO-Virgo observing run and 0.15–3.90 per year when current gravitational-wave detectors are operating at their design sensitivities

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available
    • …
    corecore