655 research outputs found

    All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems

    Get PDF
    Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most sensitive frequency band of the LIGO detectors, 50–300 Hz. Binary orbital parameters are split into four regions, comprising orbital periods of three to 45 days and projected semimajor axes of two to 40 light seconds. No detections are reported. We estimate the sensitivity of the search using simulated continuous wave signals, achieving the most sensitive results to date across the analyzed parameter space

    Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog

    Get PDF
    Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first establish that residuals from the best-fit waveform are consistent with detector noise, and that the low- and high-frequency parts of the signals are in agreement. We then consider parametrized modifications to the waveform by varying post-Newtonian and phenomenological coefficients, improving past constraints by factors of ∼2; we also find consistency with Kerr black holes when we specifically target signatures of the spin-induced quadrupole moment. Looking for gravitational-wave dispersion, we tighten constraints on Lorentz-violating coefficients by a factor of ∼2.6 and bound the mass of the graviton to mg≤1.76×10−23  eV/c2 with 90% credibility. We also analyze the properties of the merger remnants by measuring ringdown frequencies and damping times, constraining fractional deviations away from the Kerr frequency to δ^f220=0.03+0.38−0.35 for the fundamental quadrupolar mode, and δ^f221=0.04+0.27−0.32 for the first overtone; additionally, we find no evidence for postmerger echoes. Finally, we determine that our data are consistent with tensorial polarizations through a template-independent method. When possible, we assess the validity of general relativity based on collections of events analyzed jointly. We find no evidence for new physics beyond general relativity, for black hole mimickers, or for any unaccounted systematics

    Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo’s first three observing runs

    Get PDF
    We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called pystoch on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from Fα,

    Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run

    Get PDF
    We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension Gμ as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models. Additionally, we develop and test a third model that interpolates between these two models. Our results improve upon the previous LIGO–Virgo constraints on Gμ by 1 to 2 orders of magnitude depending on the model that is tested. In particular, for the one-loop distribution model, we set the most competitive constraints to date: Gμ≲4×10−15. In the case of cosmic strings formed at the end of inflation in the context of grand unified theories, these results challenge simple inflationary models

    All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data

    Get PDF
    We report on an all-sky search for continuous gravitational waves in the frequency band 20–2000 Hz and with a frequency time derivative in the range of [−1.0,+0.1]×10−8  Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six months of Advanced LIGO’s and Advanced Virgo’s third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (C.L.) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼1.7×10−25 near 200 Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are ∼6.3×10−26. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95% C.L. upper limits on the strain amplitude are ∼1.4×10−25. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of ∼2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched

    Diving below the Spin-down Limit:Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910

    Get PDF
    We present a search for quasi-monochromatic gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537−6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using Neutron star Interior Composition Explorer (NICER) data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537−6910 has the largest spin-down luminosity of any pulsar and exhibits fRequent and strong glitches. Analyses of its long-term and interglitch braking indices provide intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of the LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency from PSR J0537−6910. We find no signal, however, and report upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of 2 and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is constrained to less than about 3 ×10−5, which is the third best constraint for any young pulsar

    Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences

    Get PDF
    We report the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star–black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo and the second by all three LIGO–Virgo detectors. The source of GW200105 has component masses 8.9−1.5+1.28.{9}_{-1.5}^{+1.2} and 1.9−0.2+0.3 M⊙1.{9}_{-0.2}^{+0.3}\,{M}_{\odot }, whereas the source of GW200115 has component masses 5.7−2.1+1.85.{7}_{-2.1}^{+1.8} and 1.5−0.3+0.7 M⊙1.{5}_{-0.3}^{+0.7}\,{M}_{\odot } (all measurements quoted at the 90% credible level). The probability that the secondary's mass is below the maximal mass of a neutron star is 89%–96% and 87%–98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are 280−110+110{280}_{-110}^{+110} and 300−100+150 Mpc{300}_{-100}^{+150}\,\mathrm{Mpc}, respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of 45−33+75 Gpc−3 yr−1{45}_{-33}^{+75}\,{\mathrm{Gpc}}^{-3}\,{\mathrm{yr}}^{-1} when assuming that GW200105 and GW200115 are representative of the NSBH population or 130−69+112 Gpc−3 yr−1{130}_{-69}^{+112}\,{\mathrm{Gpc}}^{-3}\,{\mathrm{yr}}^{-1} under the assumption of a broader distribution of component masses

    Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run

    Get PDF
    We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO’s and Advanced Virgo’s third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results of the search are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density ΩGW≤5.8×10−9 at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20–76.6 Hz; ΩGW(f)≤3.4×10−9 at 25 Hz for a power-law GWB with a spectral index of 2/3 (consistent with expectations for compact binary coalescences), in the band 20–90.6 Hz; and ΩGW(f)≤3.9×10−10 at 25 Hz for a spectral index of 3, in the band 20–291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB, 8.8 for a spectral index of 2/3, and 13.1 for a spectral index of 3. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we do not find evidence of these, and place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries, updating the model to use the most recent data-driven population inference from the systems detected during O3a. Finally, we combine our results with observations of individual mergers and show that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at z≳2 than can be achieved with individually resolved mergers alone

    Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo

    Get PDF
    We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 × 10−6 (modeled) and 3.1 × 10−4 (unmodeled). We do not find any significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and therefore we report lower bounds on the distance to each of these, assuming various source types and signal morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for z ≤ 1. We estimate 0.07–1.80 joint detections with Fermi-GBM per year for the 2019–20 LIGO-Virgo observing run and 0.15–3.90 per year when current gravitational-wave detectors are operating at their design sensitivities

    Anisotropic Flow from RHIC to the LHC

    Get PDF
    Anisotropic flow is recognized as one of the main observables providing information on the early stage of a heavy-ion collision. At RHIC the large observed anisotropic flow and its successful description by ideal hydrodynamics is considered evidence for an early onset of thermalization and almost ideal fluid properties of the produced strongly coupled Quark Gluon Plasma. This write-up discusses some key RHIC anisotropic flow measurements and for anisotropic flow at the LHC some predictions.Comment: 4 pages, 6 figures, hotquarks 200
    • …
    corecore