445 research outputs found

    PHASE TRANSFORMATIONS IN THE ACTINIDES.

    Get PDF

    High speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes

    Get PDF
    The highly dynamic behaviour of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high speed synchrotron X-ray imaging facilities housed respectively at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second (fps) revealed that ultrasonic bubble implosion in a liquid Bi-8 wt. %Zn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100% higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively

    The Stability of Al11Sm3 (Al4Sm) Phases in the Al-Sm Binary System

    Get PDF
    The relative stability of Al11Sm3 (Al4Sm) intermetallic phases was experimentally investigated through a series of heat treatments followed by microstructural, microchemical, and X-ray diffraction (XRD) analyses. The principal findings are that the high-temperature tetragonal phase is stable from 1655 to 1333 K and that the low-temperature orthorhombic phases, α and γ, have no range of full stability but are metastable with respect to the crystalline Al and Sm reference states down to 0 K. Thermodynamic modeling is used to describe the relative energetics of stable and metastable phases along with the associated two-phase mixtures. Issues regarding transition energetics and kinetics are discussed

    Epitaxial Catalyst-Free Growth of InN Nanorods onc-Plane Sapphire

    Get PDF
    We report observation of catalyst-free hydride vapor phase epitaxy growth of InN nanorods. Characterization of the nanorods with transmission electron microscopy, and X-ray diffraction show that the nanorods are stoichiometric 2H–InN single crystals growing in the [0001] orientation. The InN rods are uniform, showing very little variation in both diameter and length. Surprisingly, the rods show clear epitaxial relations with thec-plane sapphire substrate, despite about 29% of lattice mismatch. Comparing catalyst-free with Ni-catalyzed growth, the only difference observed is in the density of nucleation sites, suggesting that Ni does not work like the typical vapor–liquid–solid catalyst, but rather functions as a nucleation promoter by catalyzing the decomposition of ammonia. No conclusive photoluminescence was observed from single nanorods, while integrating over a large area showed weak wide emissions centered at 0.78 and at 1.9 eV

    Modeling of Thermodynamic Properties and Phase Equilibria for the Al-Sm Binary System

    Get PDF
    The thermodynamic properties and associated phase equilibria for the Al-Sm binary system are examined, and experimental results regarding the stability of the Al3Sm, Al11Sm3, and Al4Sm intermetallics are incorporated. In the analysis presented, the liquid phase is described using a three-species association model, the intermediate phases are treated as stoichiometric compounds, and the terminal phases are treated as solid solutions with a single sublattice model. In addition to the stable phases, thermodynamic descriptions of the metastable Al11Sm3-α and Al4Sm-γ phases are employed, and both stable and metastable phase equilibria are presented over the full composition range, providing a general model, which is consistent with available experimental data. Metastable liquidus curves are examined with respect to the observed crystallization behavior of amorphous Al-Sm alloys

    Processing and mechanical properties of magnesium-lithium composites containing steel fibers

    Get PDF
    Deformation-processed metal-metal composites (DMMC) of Mg-Li alloys containing steel reinforcing fibers were prepared by infiltrating a preform of steel wool with the molten matrix. The Li content was varied to control the crystal structure of the matrix; Mg-4 wt pct Li is hexagonal close packed (hcp), while Mg-12 wt pct Li is body-centered cubic (bcc). The low carbon steel used as the reinforcing fiber is essentially bcc. The hcp/bcc and bcc/bcc composites were subsequently deformed by rolling and by extrusion/swaging and mechanically tested to relate the tensile strength of the composites to true deformation strain. The hcp/bcc composites had limited formability at temperatures up to 400 °C, while the bcc/bcc composites had excellent formability during sheet rolling at room temperature but limited formability during swaging at room temperature. The tensile strengths of the hcp/bcc composite rod and the bcc/bcc composite sheet and rod increased moderately with deformation, though less than predicted from rule-of-mixtures (ROM) calculations. This article presents the experimental data for these DMMC materials and comments on the possible effect of texture development in the matrix and fiber phases on the deformation characteristics of the composite material
    • …
    corecore