489 research outputs found
Kondo effect induced by a magnetic field
We study peculiarities of transport through a Coulomb blockade system tuned
to the vicinity of the spin transition in its ground state. Such transitions
can be induced in practice by application of a magnetic field. Tunneling of
electrons between the dot and leads mixes the states belonging to the ground
state manifold of the dot. Remarkably, both the orbital and spin degrees of
freedom of the electrons are engaged in the mixing at the singlet-triplet
transition point. We present a model which provides an adequate theoretical
description of recent experiments with semiconductor quantum dots and carbon
nanotubes
From nonwetting to prewetting: the asymptotic behavior of 4He drops on alkali substrates
We investigate the spreading of 4He droplets on alkali surfaces at zero
temperature, within the frame of Finite Range Density Functional theory. The
equilibrium configurations of several 4He_N clusters and their asymptotic trend
with increasing particle number N, which can be traced to the wetting behavior
of the quantum fluid, are examined for nanoscopic droplets. We discuss the size
effects, inferring that the asymptotic properties of large droplets correspond
to those of the prewetting film
Autologous deep vein reconstruction of infected thoracoabdominal aortic patch graft
AbstractGraft infection remains a serious complication of prosthetic aortic repair. Infection of thoracoabdominal aortic prosthetic grafts, in particular, is a significant clinical challenge and is associated with high mortality. We report successful in situ reconstruction of an infected thoracoabdominal aortic prosthetic patch graft with autogenous superficial femoral vein. To our knowledge, this is the first such case described in the North American and English language surgical literature. At 24-month follow-up the patient remains well, with no evidence of sepsis or graft complication at clinical and radiologic assessment
Kondo effect in coupled quantum dots: a Non-crossing approximation study
The out-of-equilibrium transport properties of a double quantum dot system in
the Kondo regime are studied theoretically by means of a two-impurity Anderson
Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in
slave-boson language, is solved by means of a generalization of the
non-crossing approximation (NCA) to the present problem. We provide benchmark
calculations of the predictions of the NCA for the linear and nonlinear
transport properties of coupled quantum dots in the Kondo regime. We give a
series of predictions that can be observed experimentally in linear and
nonlinear transport measurements through coupled quantum dots. Importantly, it
is demonstrated that measurements of the differential conductance , for the appropriate values of voltages and inter-dot tunneling
couplings, can give a direct observation of the coherent superposition between
the many-body Kondo states of each dot. This coherence can be also detected in
the linear transport through the system: the curve linear conductance vs
temperature is non-monotonic, with a maximum at a temperature
characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
Measurement of spin correlation in ttbar production using dilepton final states
We measure the correlation between the spin of the top quark and the spin of
the anti-top quark in (ttbar -> W+ W- b bbar -> l+ nu b l- nubar bbar) final
states produced in ppbar collisions at a center of mass energy sqrt(s)=1.96
TeV, where l is an electron or muon. The data correspond to an integrated
luminosity of 5.4 fb-1 and were collected with the D0 detector at the Fermilab
Tevatron collider. The correlation is extracted from the angles of the two
leptons in the t and tbar rest frames, yielding a correlation strength C=
0.10^{+0.45}_{-0.45}, in agreement with the NLO QCD prediction within two
standard deviations, but also in agreement with the no correlation hypothesis.Comment: 10 pages, 3 figures, submitted to PL
Search for single top quarks in the tau+jets channel using 4.8 fb of collision data
We present the first direct search for single top quark production using tau
leptons. The search is based on 4.8 fb of integrated luminosity
collected in collisions at =1.96 TeV with the D0 detector
at the Fermilab Tevatron Collider. We select events with a final state
including an isolated tau lepton, missing transverse energy, two or three jets,
one or two of them tagged. We use a multivariate technique to discriminate
signal from background. The number of events observed in data in this final
state is consistent with the signal plus background expectation. We set in the
tau+jets channel an upper limit on the single top quark cross section of
\TauLimObs pb at the 95% C.L. This measurement allows a gain of 4% in expected
sensitivity for the observation of single top production when combining it with
electron+jets and muon+jets channels already published by the D0 collaboration
with 2.3 fb of data. We measure a combined cross section of
\SuperCombineXSall pb, which is the most precise measurement to date.Comment: 12 pages, 5 figure
b-Jet Identification in the D0 Experiment
Algorithms distinguishing jets originating from b quarks from other jet
flavors are important tools in the physics program of the D0 experiment at the
Fermilab Tevatron p-pbar collider. This article describes the methods that have
been used to identify b-quark jets, exploiting in particular the long lifetimes
of b-flavored hadrons, and the calibration of the performance of these
algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research
Search for pair production of the scalar top quark in the electron-muon final state
We report the result of a search for the pair production of the lightest
supersymmetric partner of the top quark () in
collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron
collider corresponding to an integrated luminosity of 5.4 fb. The scalar
top quarks are assumed to decay into a quark, a charged lepton, and a
scalar neutrino (), and the search is performed in the electron
plus muon final state. No significant excess of events above the standard model
prediction is detected, and improved exclusion limits at the 95% C.L. are set
in the the (,) mass plane
Measurement of the dijet invariant mass cross section in proton anti-proton collisions at sqrt{s} = 1.96 TeV
The inclusive dijet production double differential cross section as a
function of the dijet invariant mass and of the largest absolute rapidity of
the two jets with the largest transverse momentum in an event is measured in
proton anti-proton collisions at sqrt{s} = 1.96 TeV using 0.7 fb^{-1}
integrated luminosity collected with the D0 detector at the Fermilab Tevatron
Collider. The measurement is performed in six rapidity regions up to a maximum
rapidity of 2.4. Next-to-leading order perturbative QCD predictions are found
to be in agreement with the data.Comment: Published in Phys. Lett. B, 693, (2010), 531-538, 8 pages, 2 figures,
6 table
Measurement of Z/gamma*+jet+X angular distributions in ppbar collisions at sqrt{s}=1.96 TeV
We present the first measurements at a hadron collider of differential cross
sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and
|y_boost(Z, jet)|. Vector boson production in association with jets is an
excellent probe of QCD and constitutes the main background to many small cross
section processes, such as associated Higgs production. These measurements are
crucial tests of the predictions of perturbative QCD and current event
generators, which have varied success in describing the data. Using these
measurements as inputs in tuning event generators will increase the
experimental sensitivity to rare signals.Comment: Published in Physics Letters B 682 (2010), pp. 370-380. 15 pages, 6
figure
- …