31,471 research outputs found

    Shuttle rocket booster computational fluid dynamics

    Get PDF
    Additional results and a revised and improved computer program listing from the shuttle rocket booster computational fluid dynamics formulations are presented. Numerical calculations for the flame zone of solid propellants are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges

    Development of a computerized analysis for solid propellant combustion instability with turbulence

    Get PDF
    A multi-dimensional numerical model has been developed for the unsteady state oscillatory combustion of solid propellants subject to acoustic pressure disturbances. Including the gas phase unsteady effects, the assumption of uniform pressure across the flame zone, which has been conventionally used, is relaxed so that a higher frequency response in the long flame of a double-base propellant can be calculated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition with no condensed phase reaction. In a given geometry, the Galerkin finite element solution shows the strong resonance and damping effect at the lower frequencies, similar to the result of Denison and Baum. Extended studies deal with the higher frequency region where the pressure varies in the flame thickness. The nonlinear system behavior is investigated by carrying out the second order expansion in wave amplitude when the acoustic pressure oscillations are finite in amplitude. Offset in the burning rate shows a negative sign in the whole frequency region considered, and it verifies the experimental results of Price. Finally, the velocity coupling in the two-dimensional model is discussed

    Effects of turbulence mixing, variable properties, and vaporization on spray droplet combustion

    Get PDF
    Combustion of liquid fuels in the form of spray droplets is simulated numerically. Various vaporization models are examined as to their performance in finite element calculations involving a turbulent flow field. The Eulerian coordinate for the gas and Lagrangian coordinate for the liquid spray droplets are coupled through source terms being updated in the equations of continuity, momentum, and energy. The k-epsilon and modified eddy breakup models are used for simulating turbulent spray combustion flow field. Numerical results for the droplet trajectories, droplet heating, recirculation characteristics, and effects of evaporation models are evaluated. It is also shown that the finite element method is advantageous in dealing with complex geometries, complex boundary conditions, adaptive unstructured grids

    Modal analysis using a Fourier analyzer, curve-fitting, and modal tuning

    Get PDF
    The proposed modal test program differs from single-input methods in that preliminary data may be acquired using multiple inputs, and modal tuning procedures may be employed to define closely spaced frquency modes more accurately or to make use of frequency response functions (FRF's) which are based on several input locations. In some respects the proposed modal test proram resembles earlier sine-sweep and sine-dwell testing in that broadband FRF's are acquired using several input locations, and tuning is employed to refine the modal parameter estimates. The major tasks performed in the proposed modal test program are outlined. Data acquisition and FFT processing, curve fitting, and modal tuning phases are described and examples are given to illustrate and evaluate them

    A mathematical simulation model of the CH-47B helicopter, volume 1

    Get PDF
    A nonlinear simulation model of the CH-47B helicopter was adapted for use in the NASA Ames Research Center (ARC) simulation facility. The model represents the specific configuration of the ARC variable stability CH-47B helicopter and will be used in ground simulation research and to expedite and verify flight experiment design. Modeling of the helicopter uses a total force approach in six rigid body degrees of freedom. Rotor dynamics are simulated using the Wheatlely-Bailey equations including steady-state flapping dynamics. Also included in the model is the option for simulation of external suspension, slung-load equations of motion

    CFD code evaluation

    Get PDF
    The task carried out under this research grant covers research on accuracy and efficiency of computational fluid dynamic (CFD) stategies, error estimates for convective terms, and antidiffusion. These basic studies are considered important in evaluating available CFD codes which will be the main activities for the next year

    High performance subgraph mining in molecular compounds

    Get PDF
    Structured data represented in the form of graphs arises in several fields of the science and the growing amount of available data makes distributed graph mining techniques particularly relevant. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiver-initiated, load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening dataset, where the approach attains close-to linear speedup in a network of workstations

    Improved determination of color-singlet nonrelativistic QCD matrix elements for S-wave charmonium

    Full text link
    We present a new computation of S-wave color-singlet nonrelativistic QCD matrix elements for the J/psi and the eta_c. We compute the matrix elements of leading order in the heavy-quark velocity v and the matrix elements of relative order v^2. Our computation is based on the electromagnetic decay rates of the J/psi and the eta_c and on a potential model that employs the Cornell potential. We include relativistic corrections to the electromagnetic decay rates, resumming a class of corrections to all orders in v, and find that they significantly increase the values of the matrix elements of leading order in v. This increase could have important implications for theoretical predictions for a number of quarkonium decay and production processes. The values that we find for the matrix elements of relative order v^2 are somewhat smaller than the values that one obtains from estimates that are based on the velocity-scaling rules of nonrelativistic QCD.Comment: 31 pages, minor corrections, version published in Phys. Rev.
    • …
    corecore