263 research outputs found

    Fully Dynamic k -Center Clustering

    Get PDF
    International audienceStatic and dynamic clustering algorithms are a fundamental tool in any machine learning library. Most of the efforts in developing dynamic machine learning and data mining algorithms have been focusing on the sliding window model (where at any given point in time only the most recent data items are retained) or more simplistic models. However, in many real-world applications one might need to deal with arbitrary deletions and insertions. For example, one might need to remove data items that are not necessarily the oldest ones, because they have been flagged as containing inappropriate content or due to privacy concerns. Clustering trajectory data might also require to deal with more general update operations. We develop a (2 +)-approximation algorithm for the k-center clustering problem with "small" amortized cost under the fully dynamic adversarial model. In such a model, points can be added or removed arbitrarily, provided that the adversary does not have access to the random choices of our algorithm. The amortized cost of our algorithm is poly-logarithmic when the ratio between the maximum and minimum distance between any two points in input is bounded by a polynomial, while k and are constant. Our theoretical results are complemented with an extensive experimental evaluation on dynamic data from Twitter, Flickr, as well as trajectory data, demonstrating the effectiveness of our approach

    Revisiting Opinion Dynamics with Varying Susceptibility to Persuasion via Non-Convex Local Search

    Get PDF
    International audienceWe revisit the opinion susceptibility problem that was proposed by Abebe et al. [1], in which agents influence one another's opinions through an iterative process. Each agent has some fixed innate opinion. In each step, the opinion of an agent is updated to some convex combination between its innate opinion and the weighted average of its neighbors' opinions in the previous step. The resistance of an agent measures the importance it places on its innate opinion in the above convex combination. Under non-trivial conditions, this iterative process converges to some equilibrium opinion vector. For the unbudgeted variant of the problem, the goal is to select the resistance of each agent (from some given range) such that the sum of the equilibrium opinions is minimized. Contrary to the claim in the aforementioned KDD 2018 paper, the objective function is in general non-convex. Hence, formulating the problem as a convex program might have potential correctness issues. We instead analyze the structure of the objective function, and show that any local optimum is also a global optimum, which is somehow surprising as the objective function might not be convex. Furthermore, we combine the iterative process and the local search paradigm to design very efficient algorithms that can solve the unbudgeted variant of the problem optimally on large-scale graphs containing millions of nodes
    • …
    corecore