3,069 research outputs found

    Lattice Dirac fermions in a non-Abelian random gauge potential: Many flavors, chiral symmetry restoration and localization

    Full text link
    In the previous paper we studied Dirac fermions in a non-Abelian random vector potential by using lattice supersymmetry. By the lattice regularization, the system of disordered Dirac fermions is defined without any ambiguities. We showed there that at strong-disorder limit correlation function of the fermion local density of states decays algebraically at the band center. In this paper, we shall reexamine the multi-flavor or multi-species case rather in detail and argue that the correlator at the band center decays {\em exponentially} for the case of a {\em large} number of flavors. This means that a delocalization-localization phase transition occurs as the number of flavors is increased. This discussion is supported by the recent numerical studies on multi-flavor QCD at the strong-coupling limit, which shows that the phase structure of QCD drastically changes depending on the number of flavors. The above behaviour of the correlator of the random Dirac fermions is closely related with how the chiral symmetry is realized in QCD.Comment: Version appears in Mod.Phys.Lett.A17(2002)135

    A theory of the electric quadrupole contribution to resonant x-ray scattering: Application to multipole ordering phases in Ce_{1-x}La_{x}B_{6}

    Full text link
    We study the electric quadrupole (E2) contribution to resonant x-ray scattering (RXS). Under the assumption that the rotational invariance is preserved in the Hamiltonian describing the intermediate state of scattering, we derive a useful expression for the RXS amplitude. One of the advantages the derived expression possesses is the full information of the energy dependence, lacking in all the previous studies using the fast collision approximation. The expression is also helpful to classify the spectra into multipole order parameters which are brought about. The expression is suitable to investigate the RXS spectra in the localized f electron systems. We demonstrate the usefulness of the formula by calculating the RXS spectra at the Ce L_{2,3} edges in Ce_{1-x}La_{x}B_{6} on the basis of the formula. We obtain the spectra as a function of energy in agreement with the experiment of Ce_{0.7}La_{0.3}B_{6}. Analyzing the azimuthal angle dependence, we find the sixfold symmetry in the \sigma-\sigma' channel and the threefold onein the \sigma-\pi' channel not only in the antiferrooctupole (AFO) ordering phase but also in the antiferroquadrupole (AFQ) ordering phase, which behavior depends strongly on the domain distribution. The sixfold symmetry in the AFQ phase arises from the simultaneously induced hexadecapole order. Although the AFO order is plausible for phase IV in Ce_{1-x}La_{x}B_{6}, the possibility of the AFQ order may not be ruled out on the basis of azimuthal angle dependence alone.Comment: 12 pages, 6 figure

    Semiclassical Approach to Parametric Spectral Correlation with Spin 1/2

    Full text link
    The spectral correlation of a chaotic system with spin 1/2 is universally described by the GSE (Gaussian Symplectic Ensemble) of random matrices in the semiclassical limit. In semiclassical theory, the spectral form factor is expressed in terms of the periodic orbits and the spin state is simulated by the uniform distribution on a sphere. In this paper, instead of the uniform distribution, we introduce Brownian motion on a sphere to yield the parametric motion of the energy levels. As a result, the small time expansion of the form factor is obtained and found to be in agreement with the prediction of parametric random matrices in the transition within the GSE universality class. Moreover, by starting the Brownian motion from a point distribution on the sphere, we gradually increase the effect of the spin and calculate the form factor describing the transition from the GOE (Gaussian Orthogonal Ensemble) class to the GSE class.Comment: 25 pages, 2 figure

    Universality for orthogonal and symplectic Laguerre-type ensembles

    Full text link
    We give a proof of the Universality Conjecture for orthogonal (beta=1) and symplectic (beta=4) random matrix ensembles of Laguerre-type in the bulk of the spectrum as well as at the hard and soft spectral edges. Our results are stated precisely in the Introduction (Theorems 1.1, 1.4, 1.6 and Corollaries 1.2, 1.5, 1.7). They concern the appropriately rescaled kernels K_{n,beta}, correlation and cluster functions, gap probabilities and the distributions of the largest and smallest eigenvalues. Corresponding results for unitary (beta=2) Laguerre-type ensembles have been proved by the fourth author in [23]. The varying weight case at the hard spectral edge was analyzed in [13] for beta=2: In this paper we do not consider varying weights. Our proof follows closely the work of the first two authors who showed in [7], [8] analogous results for Hermite-type ensembles. As in [7], [8] we use the version of the orthogonal polynomial method presented in [25], [22] to analyze the local eigenvalue statistics. The necessary asymptotic information on the Laguerre-type orthogonal polynomials is taken from [23].Comment: 75 page

    Determinantal process starting from an orthogonal symmetry is a Pfaffian process

    Full text link
    When the number of particles NN is finite, the noncolliding Brownian motion (BM) and the noncolliding squared Bessel process with index ν>1\nu > -1 (BESQ(ν)^{(\nu)}) are determinantal processes for arbitrary fixed initial configurations. In the present paper we prove that, if initial configurations are distributed with orthogonal symmetry, they are Pfaffian processes in the sense that any multitime correlation functions are expressed by Pfaffians. The 2×22 \times 2 skew-symmetric matrix-valued correlation kernels of the Pfaffians processes are explicitly obtained by the equivalence between the noncolliding BM and an appropriate dilatation of a time reversal of the temporally inhomogeneous version of noncolliding BM with finite duration in which all particles start from the origin, Nδ0N \delta_0, and by the equivalence between the noncolliding BESQ(ν)^{(\nu)} and that of the noncolliding squared generalized meander starting from Nδ0N \delta_0.Comment: v2: AMS-LaTeX, 17 pages, no figure, corrections made for publication in J.Stat.Phy

    Vicious walk with a wall, noncolliding meanders, and chiral and Bogoliubov-deGennes random matrices

    Full text link
    Spatially and temporally inhomogeneous evolution of one-dimensional vicious walkers with wall restriction is studied. We show that its continuum version is equivalent with a noncolliding system of stochastic processes called Brownian meanders. Here the Brownian meander is a temporally inhomogeneous process introduced by Yor as a transform of the Bessel process that is a motion of radial coordinate of the three-dimensional Brownian motion represented in the spherical coordinates. It is proved that the spatial distribution of vicious walkers with a wall at the origin can be described by the eigenvalue-statistics of Gaussian ensembles of Bogoliubov-deGennes Hamiltonians of the mean-field theory of superconductivity, which have the particle-hole symmetry. We report that the time evolution of the present stochastic process is fully characterized by the change of symmetry classes from the type CC to the type CCI in the nonstandard classes of random matrix theory of Altland and Zirnbauer. The relation between the non-colliding systems of the generalized meanders of Yor, which are associated with the even-dimensional Bessel processes, and the chiral random matrix theory is also clarified.Comment: REVTeX4, 16 pages, 4 figures. v2: some additions and correction

    Effects of Rattling Phonons on the Quasiparticle Excitation and Dynamics in the Superconducting β\beta-Pyrochlore KOs2_2O6_6

    Get PDF
    Microwave penetration depth λ\lambda and surface resistance at 27 GHz are measured in high quality crystals of KOs2_2O6_6. Firm evidence for fully-gapped superconductivity is provided from λ(T)\lambda(T). Below the second transition at Tp8T_{\rm p}\sim 8 K, the superfluid density shows a step-like change with a suppression of effective critical temperature TcT_{\rm c}. Concurrently, the extracted quasiparticle scattering time shows a steep enhancement, indicating a strong coupling between the anomalous rattling motion of K ions and quasiparticles. The results imply that the rattling phonons help to enhance superconductivity, and that K sites freeze to an ordered state with long quasiparticle mean free path below TpT_{\rm p}.Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let
    corecore