1,120 research outputs found

    Two-fluid hydrodynamics of a Bose gas including damping from normal fluid transport coefficients

    Get PDF
    We extend our recent work on the two-fluid hydrodynamics of the condensate and non-condensate in a trapped Bose gas by including the dissipation associated with viscosity and thermal conduction. For purposes of illustration, we consider the hydrodynamic modes in the case of a uniform Bose gas. A finite thermal conductivity and shear viscosity give rise to a damping of the first and second sound modes in addition to that found previously due to the lack of diffusive equilibrium between the condensate and non-condensate. The relaxational mode associated with this equilibration process is strongly coupled to thermal fluctuations and reduces to the usual thermal diffusion mode above the Bose-Einstein transition. In contrast to the standard Landau two-fluid hydrodynamics, we predict a damped mode centered at zero frequency, in addition to the usual second sound doublet.Comment: 18 pages, revtex, 4 postscript figures, Submitted to the Canadian Journal of Physics for the Boris Stoicheff Festschrift issu

    Two-fluid dynamics for a Bose-Einstein condensate out of local equilibrium with the non-condensate

    Full text link
    We extend our recent work on the two-fluid hydrodynamics of a Bose-condensed gas by including collisions involving both condensate and non-condensate atoms. These collisions are essential for establishing a state of local thermodynamic equilibrium between the condensate and non-condensate. Our theory is more general than the usual Landau two-fluid theory, to which it reduces in the appropriate limit, in that it allows one to describe situations in which a state of complete local equilibrium between the two components has not been reached. The exchange of atoms between the condensate and non-condensate is associated with a new relaxational mode of the gas.Comment: 4 pages, revtex, 1 postscript figure, Fig.1 has been correcte

    Magnetoplasmon excitations in an array of periodically modulated quantum wires

    Full text link
    Motivated by the recent experiment of Hochgraefe et al., we have investigated the magnetoplasmon excitations in a periodic array of quantum wires with a periodic modulation along the wire direction. The equilibrium and dynamic properties of the system are treated self-consistently within the Thomas-Fermi-Dirac-von Weizsaecker approximation. A calculation of the dynamical response of the system to a far-infrared radiation field reveals a resonant anticrossing between the Kohn mode and a finite-wavevector longitudinal excitation which is induced by the density modulation along the wires. Our theoretical calculations are found to be in excellent agreement with experiment.Comment: 9 pages, 8 figure

    Temperature-dependent relaxation times in a trapped Bose-condensed gas

    Full text link
    Explicit expressions for all the transport coefficients have recently been found for a trapped Bose condensed gas at finite temperatures. These transport coefficients are used to define the characteristic relaxation times, which determine the crossover between the mean-field collisionless and the two-fluid hydrodynamic regime. These relaxation times are evaluated as a function of the position in the trap potential. We show that all the relaxation times are dominated by the collisions between the condensate and the non-condensate atoms, and are much smaller than the standard classical collision time used in most of the current literature. The 1998 MIT study of the collective modes at finite temperature is shown to have been well within the two-fluid hydrodynamic regime.Comment: 4 pages, 3 figures, to be published in Phys. Rev.

    Multi-site mean-field theory for cold bosonic atoms in optical lattices

    Full text link
    We present a detailed derivation of a multi-site mean-field theory (MSMFT) used to describe the Mott-insulator to superfluid transition of bosonic atoms in optical lattices. The approach is based on partitioning the lattice into small clusters which are decoupled by means of a mean field approximation. This approximation invokes local superfluid order parameters defined for each of the boundary sites of the cluster. The resulting MSMFT grand potential has a non-trivial topology as a function of the various order parameters. An understanding of this topology provides two different criteria for the determination of the Mott insulator superfluid phase boundaries. We apply this formalism to dd-dimensional hypercubic lattices in one, two and three dimensions, and demonstrate the improvement in the estimation of the phase boundaries when MSMFT is utilized for increasingly larger clusters, with the best quantitative agreement found for d=3d=3. The MSMFT is then used to examine a linear dimer chain in which the on-site energies within the dimer have an energy separation of Δ\Delta. This system has a complicated phase diagram within the parameter space of the model, with many distinct Mott phases separated by superfluid regions.Comment: 30 pages, 23 figures, accepted for publication in Phys. Rev.

    Frequency and damping of hydrodynamic modes in a trapped Bose-condensed gas

    Full text link
    Recently it was shown that the Landau-Khalatnikov two-fluid hydrodynamics describes the collision-dominated region of a trapped Bose condensate interacting with a thermal cloud. We use these equations to discuss the low frequency hydrodynamic collective modes in a trapped Bose gas at finite temperatures. We derive a variational expressions based on these equations for both the frequency and damping of collective modes. A new feature is our use of frequency-dependent transport coefficients, which produce a natural cutoff by eliminating the collisionless low-density tail of the thermal cloud. Above the superfluid transition, our expression for the damping in trapped inhomogeneous gases is analogous to the result first obtained by Landau and Lifshitz for uniform classical fluids. We also use the moment method to discuss the crossover from the collisionless to the hydrodynamic region. Recent data for the monopole-quadrupole mode in the hydrodynamic region of a trapped gas of metastable 4^4He is discussed. We also present calculations for the damping of the analogous m=0m=0 monopole-quadrupole condensate mode in the superfluid phase.Comment: 22 pages, 10 figures, submitted to Physical Review

    Transverse Magnetoresistance of GaAs/AlGaAs Heterojunctions in the Presence of Parallel Magnetic Fields

    Full text link
    We have calculated the resistivity of a GaAs\slash AlGaAs heterojunction in the presence of both an in--plane magnetic field and a weak perpendicular component using a semiclassical Boltzmann transport theory. These calculations take into account fully the distortion of the Fermi contour which is induced by the parallel magnetic field. The scattering of electrons is assumed to be due to remote ionized impurities. A positive magnetoresistance is found as a function of the perpendicular component, in good qualitative agreement with experimental observations. The main source of this effect is the strong variation of the electronic scattering rate around the Fermi contour which is associated with the variation in the mean distance of the electronic states from the remote impurities. The magnitude of the positive magnetoresistance is strongly correlated with the residual acceptor impurity density in the GaAs layer. The carrier lifetime anisotropy also leads to an observable anisotropy in the resistivity with respect to the angle between the current and the direction of the in--plane magnetic field.Comment: uuencoded file containing a 26 page RevTex file and 14 postscript figures. Submitted to Phys. Rev.

    Landau-Khalatnikov two-fluid hydrodynamics of a trapped Bose gas

    Full text link
    Starting from the quantum kinetic equation for the non-condensate atoms and the generalized Gross-Pitaevskii equation for the condensate, we derive the two-fluid hydrodynamic equations of a trapped Bose gas at finite temperatures. We follow the standard Chapman-Enskog procedure, starting from a solution of the kinetic equation corresponding to the complete local equilibrium between the condensate and the non-condensate components. Our hydrodynamic equations are shown to reduce to a form identical to the well-known Landau-Khalatnikov two-fluid equations, with hydrodynamic damping due to the deviation from local equilibrium. The deviation from local equilibrium within the thermal cloud gives rise to dissipation associated with shear viscosity and thermal conduction. In addition, we show that effects due to the deviation from the diffusive local equilibrium between the condensate and the non-condensate (recently considered by Zaremba, Nikuni and Griffin) can be described by four frequency-dependent second viscosity transport coefficients. We also derive explicit formulas for all the transport coefficients. These results are used to introduce two new characteristic relaxation times associated with hydrodynamic damping. These relaxation times give the rate at which local equilibrium is reached and hence determine whether one is in the two-fluid hydrodynamic region.Comment: 26 pages, 3 postscript figures, submitted to PR
    corecore