254,696 research outputs found

    Coherent State Control of Non-Interacting Quantum Entanglement

    Full text link
    We exploit a novel approximation scheme to obtain a new and compact formula for the parameters underlying coherent-state control of the evolution of a pair of entangled two-level systems. It is appropriate for long times and for relatively strong external quantum control via coherent state irradiation. We take account of both discrete-state and continuous-variable degrees of freedom. The formula predicts the relative heights of entanglement revivals and their timing and duration.Comment: Published in PRA, 10 pages, 7 figure

    Phonon decoherence of quantum entanglement: Robust and fragile states

    Full text link
    We study the robustness and fragility of entanglement of open quantum systems in some exactly solvable models in which the decoherence is caused by a pure dephasing process. In particular, for the toy models presented in this paper, we identify two different time scales, one is responsible for local dephasing, while the other is for entanglement decay. For a class of fragile entangled states defined in this paper, we find that the entanglement of two qubits, as measured by concurrence, decays faster asymptotically than the quantum dephasing of an individual qubit.Comment: 11 pages, revtex, no figure

    Novel valley depolarization dynamics and valley Hall effect of exciton in mono- and bilayer MoS2_2

    Full text link
    We investigate the valley depolarization dynamics and valley Hall effect of exciton due to the electron-hole exchange interaction in mono- and bilayer MoS2_2 by solving the kinetic spin Bloch equations. The effect of the exciton energy spectra by the electron-hole exchange interaction is explicitly considered. For the valley depolarization dynamics, in the monolayer MoS2_2, it is found that in the strong scattering regime, the conventional motional narrowing picture is no longer valid, and a novel valley depolarization channel is opened. For the valley Hall effect of exciton, in both the mono- and bilayer MoS2_2, with the exciton equally pumped in the K and K' valleys, the system can evolve into the equilibrium state where the valley polarization is parallel to the effective magnetic field due to the exchange interaction. With the drift of this equilibrium state by applied uniaxial strain, the exchange interaction can induce the {\it momentum-dependent} valley/photoluminesence polarization, which leads to the valley/photoluminesence Hall current. Specifically, the disorder strength dependence of the valley Hall conductivity is revealed. In the strong scattering regime, the valley Hall conductivity decreases with the increase of the disorder strength; whereas in the weak scattering regime, it saturates to a constant, which can be much larger than the one in Fermi system due to the absence of the Pauli blocking.Comment: 14 pages, 7 figure

    Vortex structure in long Josephson junction with two inhomogeneities

    Full text link
    A report of numerical experiment results on long Josephson junction with one and two rectangular inhomogeneities in the barrier layer is presented. In case of one inhomogeneity we demonstrate the existence of the asymmetric fluxon states. The disappearance of mixed fluxon-antifluxon states when the position of inhomogeneity shifted to the end of the junction is shown. In case with two inhomogeneities the change of the amplitude of Josephson current through the inhomogeneity at the end of junction makes strong effect on the stability of the fluxon states and smoothes the maximums on the dependence ``critical current - magnetic field''.Comment: Presented for M2S, Dresden, July 9-14, 200
    corecore