25,134 research outputs found
Viscoelastic Behavior of Solid He
Over the last five years several experimental groups have reported anomalies
in the temperature dependence of the period and amplitude of a torsional
oscillator containing solid He. We model these experiments by assuming that
He is a viscoelastic solid--a solid with frequency dependent internal
friction. We find that while our model can provide a quantitative account of
the dissipation observed in the torsional oscillator experiments, it only
accounts for about 10% of the observed period shift, leaving open the
possibility that the remaining period shift is due to the onset of
superfluidity in the sample.Comment: 4 pages, 3 figure
Ultra-Low Fertility in Korea: The Role of Tempo Effect
Background: The total fertility rate (TFR) in South Korea has fallen below 1.3 since 2001. However, little is known about the role of the rapid shift towards late childbearing in driving Korean fertility decline to this “ultra-low” level.
Objective: We provide an in-depth analysis of period fertility trends by birth order in South Korea from 1981 to 2014 when the period TFR fell from 2.66 to extreme low levels.
Methods: We combine census and birth registration data to estimate period and cohort fertility indicators by birth order. We compare changes in conventional TFR with tempo- and parity-adjusted total fertility rate (TFRp*) and their birth order-specific components.
Results: Tempo effect linked to the shift towards delayed childbearing has had a strong and persistent negative influence on period TFRs in Korea since the early 1980s. Without the shift to later childbearing, period fertility rates in Korea would consistently stay higher and would decline more gradually, falling below a threshold of very low fertility, 1.5, only in 2014. The postponement of childbearing and the resulting tempo effect were strongest in the early 2000s, when Korean TFR reached the lowest levels. More recently, Korean fertility has been characterized by diminishing tempo effect and falling first and second birth rates. This trend marks a break with the previous pattern of almost universal fertility and a strong two-child family model.
Contribution: Our study demonstrates the importance of tempo effect in explaining the shift to “ultra-low” fertility in Korea and in East Asia
Young\u27s modulus of [111] germanium nanowires
This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germaniumnanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior
Photoluminescent characteristics of Ni-catalyzed GaN nanowires
The authors report on time-integrated and time-resolved photoluminescence (PL) of GaN nanowires grown by the Ni-catalyst-assisted vapor-liquid-solid method. From PL spectra of Ni-catalyzed GaN nanowires at 10 K, several PL peaks were observed at 3.472, 3.437, and 3.266 eV, respectively. PL peaks at 3.472 and 3.266 eV are attributed to neutral-donor-bound excitons and donor-acceptor pair, respectively. Furthermore, according to the results from temperature-dependent and time-resolved PL measurements, the origin of the PL peak at 3.437 eV is also discussed. (c) 2006 American Institute of Physics.X1147sciescopu
Kaluza-Klein Dark Matter: Direct Detection vis-a-vis LHC
We explore the phenomenology of Kaluza-Klein (KK) dark matter in very general
models with universal extra dimensions (UEDs), emphasizing the complementarity
between high-energy colliders and dark matter direct detection experiments. In
models with relatively small mass splittings between the dark matter candidate
and the rest of the (colored) spectrum, the collider sensitivity is diminished,
but direct detection rates are enhanced. UEDs provide a natural framework for
such mass degeneracies. We consider both 5-dimensional and 6-dimensional
non-minimal UED models, and discuss the detection prospects for various KK dark
matter candidates: the KK photon , the KK -boson , the KK
Higgs boson and the spinless KK photon . We combine collider
limits such as electroweak precision data and expected LHC reach, with
cosmological constraints from WMAP, and the sensitivity of current or planned
direct detection experiments. Allowing for general mass splittings, we show
that neither colliders, nor direct detection experiments by themselves can
explore all of the relevant KK dark matter parameter space. Nevertheless, they
probe different parameter space regions, and the combination of the two types
of constraints can be quite powerful. For example, in the case of in
5D UEDs the relevant parameter space will be almost completely covered by the
combined LHC and direct detection sensitivities expected in the near future.Comment: 52 pages, 29 figure
Superconductivity and Lattice Instability in Compressed Lithium from Fermi Surface Hot Spots
The highest superconducting temperature T observed in any elemental metal
(Li with T ~ 20 K at pressure P ~ 40 GPa) is shown to arise from critical
(formally divergent) electron-phonon coupling to the transverse T phonon
branch along intersections of Kohn anomaly surfaces with the Fermi surface.
First principles linear response calculations of the phonon spectrum and
spectral function reveal (harmonic) instability already at
25 GPa. Our results imply that the fcc phase is anharmonically stabilized in
the 25-38 GPa range.Comment: 4 pages, 3 embedded figure
- …