8,187 research outputs found
Free flight determination of boundary layer transition on small scale cones in the presence of surface ablation
To assess the possibility of achieving extensive laminar flow on conical vehicles during hyperbolic entry, the Ames Research Center has had an ongoing program to study boundary-layer transition on ablating cones. Boundary layer transition results are presented from ballistic range experiments with models that ablated at dimensionless mass transfer rates comparable to those expected for full scale flight at speeds up to 17 km/sec. It was found possible to measure the surface recession and hence more accurately identify regions of laminar, transitional, and turbulent flow along generators of the recovered cones. Some preliminary results using this technique are presented
Optical frequency comb generation from a monolithic microresonator
Optical frequency combs provide equidistant frequency markers in the
infrared, visible and ultra-violet and can link an unknown optical frequency to
a radio or microwave frequency reference. Since their inception frequency combs
have triggered major advances in optical frequency metrology and precision
measurements and in applications such as broadband laser-based gas sensing8 and
molecular fingerprinting. Early work generated frequency combs by intra-cavity
phase modulation while to date frequency combs are generated utilizing the
comb-like mode structure of mode-locked lasers, whose repetition rate and
carrier envelope phase can be stabilized. Here, we report an entirely novel
approach in which equally spaced frequency markers are generated from a
continuous wave (CW) pump laser of a known frequency interacting with the modes
of a monolithic high-Q microresonator13 via the Kerr nonlinearity. The
intrinsically broadband nature of parametric gain enables the generation of
discrete comb modes over a 500 nm wide span (ca. 70 THz) around 1550 nm without
relying on any external spectral broadening. Optical-heterodyne-based
measurements reveal that cascaded parametric interactions give rise to an
optical frequency comb, overcoming passive cavity dispersion. The uniformity of
the mode spacing has been verified to within a relative experimental precision
of 7.3*10(-18).Comment: Manuscript and Supplementary Informatio
- …