244 research outputs found
Epidemiology and natural history of central venous access device use and infusion pump function in the NO16966 trial
Background:Â Central venous access devices in fluoropyrimidine therapy are associated with complications; however, reliable data are lacking regarding their natural history, associated complications and infusion pump performance in patients with metastatic colorectal cancer.<p></p>
Methods:Â We assessed device placement, use during treatment, associated clinical outcomes and infusion pump perfomance in the NO16966 trial.<p></p>
Results: Device replacement was more common with FOLFOX-4 (5-fluorouracil (5-FU)+oxaliplatin) than XELOX (capecitabine+oxaliplatin) (14.1% vs 5.1%). Baseline device-associated events and post-baseline removal-/placement-related events occurred more frequently with FOLFOX-4 than XELOX (11.5% vs 2.4% and 8.5% vs 2.1%). Pump malfunctions, primarily infusion accelerations in 16% of patients, occurred within 1.6–4.3% of cycles. Fluoropyrimidine-associated grade 3/4 toxicity was increased in FOLFOX-4-treated patients experiencing a malfunction compared with those who did not (97 out of 155 vs 452 out of 825 patients), predominantly with increased grade 3/4 neutropenia (53.5% vs 39.8%). Febrile neutropenia rates were comparable between patient cohorts±malfunction. Efficacy outcomes were similar in patient cohorts±malfunction.<p></p>
Conclusions:Â Central venous access device removal or replacement was common and more frequent in patients receiving FOLFOX-4. Pump malfunctions were also common and were associated with increased rates of grade 3/4 haematological adverse events. Oral fluoropyrimidine-based regimens may be preferable to infusional 5-FU based on these findings
Discovering the New Standard Model: Fundamental Symmetries and Neutrinos
This White Paper describes recent progress and future opportunities in the
area of fundamental symmetries and neutrinos.Comment: Report of the Fundamental Symmetries and Neutrinos Workshop, August
10-11, 2012, Chicago, I
Negative electrostatic contribution to the bending rigidity of charged membranes and polyelectrolytes screened by multivalent counterions
Bending rigidity of a charged membrane or a charged polyelectrolyte screened
by monovalent counterions is known to be enhanced by electrostatic effects. We
show that in the case of screening by multivalent counterions the electrostatic
effects reduce the bending rigidity. This inversion of the sign of the
electrostatic contribution is related to the formation of two-dimensional
strongly correlated liquids (SCL) of counterions at the charged surface due to
strong lateral repulsion between them. When a membrane or a polyelectrolyte is
bent, SCL is compressed on one side and stretched on the other so that
thermodynamic properties of SCL contribute to the bending rigidity.
Thermodynamic properties of SCL are similar to those of Wigner crystal and are
anomalous in the sense that the pressure, compressibility and screening radius
of SCL are negative. This brings about substantial negative correction to the
bending rigidity. For the case of DNA this effect qualitatively agrees with
experiment.Comment: 8 pages, 2 figure
Recommended from our members
Low-Multiplicity Burst Search At The Sudbury Neutrino Observatory
Results are reported from a search for low-multiplicity neutrino bursts in the Sudbury Neutrino Observatory. Such bursts could indicate the detection of a nearby core-collapse supernova explosion. The data were taken from Phase I (1999 November-2001 May), when the detector was filled with heavy water, and Phase II (2001 July-2003 August), when NaCl was added to the target. The search was a blind analysis in which the potential backgrounds were estimated and analysis cuts were developed to eliminate such backgrounds with 90% confidence before the data were examined. The search maintained a greater than 50% detection probability for standard supernovae occurring at a distance of up to 60 kpc for Phase I and up to 70 kpc for Phase II. No low-multiplicity bursts were observed during the data-taking period.Natural Sciences and Engineering Research Council, CanadaIndustry Canada, CanadaNational Research Council, CanadaNorthern Ontario Heritage Fund, CanadaAtomic Energy of Canada, Ltd., CanadaOntario Power Generation, CanadaHigh Performance Computing Virtual Laboratory, CanadaCanada Foundation for Innovation, CanadaCanada Research Chairs, CanadaDepartment of Energy, USNational Energy Research Scientific Computing Center, USAlfred P. Sloan Foundation, USScience and Technology Facilities Council, UKFundacao para a Ciencia e a Technologia, PortugalAstronom
Independent measurement of the total active B8 solar neutrino flux using an array of He3 proportional counters at the Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (νx) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54-0.31+0.33(stat)-0.34+0.36(syst)×106  cm-2 s-1, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Δm2=7.59-0.21+0.19×10-5  eV2 and θ=34.4-1.2+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO’s previous results
Recommended from our members
Searches For High-Frequency Variations In The B-8 Solar Neutrino Flux At The Sudbury Neutrino Observatory
We have performed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory, motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar B-8 neutrinos. The first search looked for any significant peak in the frequency range 1-144 day(-1), with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the Solar and Heliospheric Observatory satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.Natural Sciences and Engineering Research Council, CanadaIndustry Canada, CanadaNational Research Council, CanadaNorthern Ontario Heritage Fund, CanadaAtomic Energy of Canada, Ltd., CanadaOntario Power Generation, CanadaHigh Performance Computing Virtual Laboratory, CanadaCanada Foundation for InnovationDept. of Energy, USNational Energy Research Scientific Computing Center, USScience and Technologies Facilities Council, UKAstronom
A Search for Neutrinos from the Solar hep Reaction and the Diffuse Supernova Neutrino Background with the Sudbury Neutrino Observatory
A search has been made for neutrinos from the hep reaction in the Sun and from the diffus
Low Multiplicity Burst Search at the Sudbury Neutrino Observatory
Results are reported from a search for low-multiplicity neutrino bursts in
the Sudbury Neutrino Observatory (SNO). Such bursts could indicate detection of
a nearby core-collapse supernova explosion. The data were taken from Phase I
(November 1999 - May 2001), when the detector was filled with heavy water, and
Phase II (July 2001 - August 2003), when NaCl was added to the target. The
search was a blind analysis in which the potential backgrounds were estimated
and analysis cuts were developed to eliminate such backgrounds with 90%
confidence before the data were examined. The search maintained a greater than
50% detection probability for standard supernovae occurring at a distance of up
to 60 kpc for Phase I and up to 70 kpc for Phase II. No low-multiplicity bursts
were observed during the data-taking period.Comment: 11 pages, 4 figures, submitted to Ap
Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory
We report results from a combined analysis of solar neutrino data from all
phases of the Sudbury Neutrino Observatory. By exploiting particle
identification information obtained from the proportional counters installed
during the third phase, this analysis improved background rejection in that
phase of the experiment. The combined analysis resulted in a total flux of
active neutrino flavors from 8B decays in the Sun of (5.25 \pm
0.16(stat.)+0.11-0.13(syst.))\times10^6 cm^{-2}s^{-1}. A two-flavor neutrino
oscillation analysis yielded \Deltam^2_{21} = (5.6^{+1.9}_{-1.4})\times10^{-5}
eV^2 and tan^2{\theta}_{12}= 0.427^{+0.033}_{-0.029}. A three-flavor neutrino
oscillation analysis combining this result with results of all other solar
neutrino experiments and the KamLAND experiment yielded \Deltam^2_{21} =
(7.41^{+0.21}_{-0.19})\times10^{-5} eV^2, tan^2{\theta}_{12} =
0.446^{+0.030}_{-0.029}, and sin^2{\theta}_{13} =
(2.5^{+1.8}_{-1.5})\times10^{-2}. This implied an upper bound of
sin^2{\theta}_{13} < 0.053 at the 95% confidence level (C.L.)
- …