152,718 research outputs found

    Some identities on derangement and degenerate derangement polynomials

    Full text link
    In combinatorics, a derangement is a permutation that has no fixed points. The number of derangements of an n-element set is called the n-th derangement number. In this paper, as natural companions to derangement numbers and degenerate versions of the companions we introduce derangement polynomials and degenerate derangement polynomials. We give some of their properties, recurrence relations and identities for those polynomials which are related to some special numbers and polynomials.Comment: 12 page

    New identities involving q-Euler polynomials of higher order

    Full text link
    In this paper we give new identities involving q-Euler polynomials of higher order.Comment: 11 page

    Modulation of the Curie Temperature in Ferromagnetic/Ferroelectric Hybrid Double Quantum Wells

    Full text link
    We propose a ferromagnetic/ferroelectric hybrid double quantum well structure, and present an investigation of the Curie temperature (Tc) modulation in this quantum structure. The combined effects of applied electric fields and spontaneous electric polarization are considered for a system that consists of a Mn \delta-doped well, a barrier, and a p-type ferroelectric well. We calculate the change in the envelope functions of carriers at the lowest energy sub-band, resulting from applied electric fields and switching the dipole polarization. By reversing the depolarizing field, we can achieve two different ferromagnetic transition temperatures of the ferromagnetic quantum well in a fixed applied electric field. The Curie temperature strongly depends on the position of the Mn \delta-doped layer and the polarization strength of the ferroelectric well.Comment: 9 pages, 5 figures, to be published in Phys. Rev. B (2006) minor revision: One of the line types is changed in Fig.

    Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 7Li+208Pb System at Near-Coulomb-Barrier Energies using the Folding Potential

    Full text link
    Simultaneous χ2\chi^{2} analyses previously made for elastic scattering and fusion cross section data for the 6^{6}Li+208^{208}Pb system is extended to the 7^{7}Li+208^{208}Pb system at near-Coulomb-barrier energies based on the extended optical model approach, in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and that both the DR and fusion parts of the polarization potential determined from the χ2\chi^{2} analyses satisfy separately the dispersion relation. Further, we find that the real part of the fusion portion of the polarization potential is attractive while that of the DR part is repulsive except at energies far below the Coulomb barrier energy. A comparison is made of the present results with those obtained from the Continuum Discretized Coupled Channel (CDCC) calculations and a previous study based on the conventional optical model with a double folding potential. We also compare the present results for the 7^7Li+208^{208}Pb system with the analysis previously made for the 6^{6}Li+208^{208}Pb system.Comment: 7 figures, submitted to PR

    Entropy of the Randall-Sundrum brane world with the generalized uncertainty principle

    Full text link
    By introducing the generalized uncertainty principle, we calculate the entropy of the bulk scalar field on the Randall-Sundrum brane background without any cutoff. We obtain the entropy of the massive scalar field proportional to the horizon area. Here, we observe that the mass contribution to the entropy exists in contrast to all previous results, which is independent of the mass of the scalar field, of the usual black hole cases with the generalized uncertainty principle.Comment: 12 pages. The improved version published in Phys. Rev.

    Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 12^{12}C+208^{208}Pb System at Near-Coulomb-Barrier Energies by using a Folding Potential

    Full text link
    Simultaneous χ2\chi^{2} analyses are performed for elastic scattering and fusion cross section data for the 12^{12}C+208^{208}Pb system at near-Coulomb-barrier energies by using the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and also that both DR and fusion parts of the polarization potential determined from the χ2\chi^{2} analyses satisfy separately the dispersion relation. Furthermore, it is shown that the imaginary parts of both DR and fusion potentials at the strong absorption radius change very rapidly, which results in a typical threshold anomaly in the total imaginary potential as observed with tightly bound projectiles such as α\alpha-particle and 16^{16}O.Comment: 26 pages, 7 figures, submitted to Physical Review

    Multivariate p-dic L-function

    Full text link
    We construct multivariate p-adic L-function in the p-adic number fild by using Washington method.Comment: 9 page

    Cold dust clumps in dynamically hot gas

    Get PDF
    Aims. We present clumps of dust emission from Herschel observations of the Large Magellanic Cloud (LMC) and their physical and statistical properties. We catalog cloud features seen in the dust emission from Herschel observations of the LMC, the Magellanic type irregular galaxy closest to the Milky Way, and compare these features with Hi catalogs from the ATCA+Parkes Hi survey. Methods. Using an automated cloud-finding algorithm, we identify clouds and clumps of dust emission and examine the cumulative mass distribution of the detected dust clouds. The mass of cold dust is determined from physical parameters that we derive by performing spectral energy distribution fits to 250, 350, and 500 μm emission from SPIRE observations using dust grain size distributions for graphite/silicate in low-metallicity extragalactic environments. Results. The dust cloud mass spectrum follows a power law distribution with an exponent of γ = −1.8 for clumps larger than 4 × 10^2 M_⊙ and is similar to the Hi mass distribution. This is expected from the theory of ISM structure in the vicinity of star formation
    • …
    corecore