24 research outputs found
Scratch Fracture of Polycrystalline Silicon Wafers
Fracture of silicon wafers is responsible for lower than desirable manufacturing yields in the photovoltaic industry. This study investigates the fracture response of polycrystalline silicon wafers under sliding contacts at different length scales, by means of macro and microscratch tests which simulate cutting processes. The dominant fracture modes were found to be partial cone cracking (macro) and radial cracking (micro). Statistical analysis of the critical loads for crack initiation showed that polycrystalline wafers are weaker than their single-crystal counterparts, that is, they crack at lower applied loads under comparable conditions. Moreover, the Weibull modulus of polycrystalline silicon was found to be the average of the relevant single-crystal directions. Subsequent microscopic observations and flexure tests reveal that the lower resistance of polycrystalline silicon to scratch fracture is due mainly to the presence of relatively large polishing defects, and not to the weakness of its grain boundaries. Alternatives are proposed to minimize damage during ingot cutting, with a view to minimizing wafer breakages during wafer handling and machining
Evacuated non-tubular solar thermal collectors
Evacuated non-tubular solar thermal collectors were proposed for solar thermal concentrated systems, which consists of a flat glass window as an aperture accepting solar radiation. Simulation with ANSYS showed that a reasonably wide design region is available for the solar radiation aperture. The collectors enhance solar thermal efficiency and relax the requirements on absorber surfaces for high temperature applications
Fine Structure of the Dorsal Surface of Ostrich`s (Struthio camelus) Tongue
The tongue of birds fills the oral cavity and has a beak-like shape. Morphological studies of birds reveal a correlation between the structure of the tongue and the mechanism of food intake and the type of food. However, several studies have shown morphological differences among the tongues of bird species. The aim of this study was to analyze ostrich tongue morphology and ultrastructural features using scanning electron microscopy. Tongues from 12 adult ostriches were examined. Six tongues were sectioned sagittally into lateral and middle portions, fixed in 10% formaldehyde solution, and examined under light microscopy. The other six samples were sectioned longitudinally, and the dorsal and ventral surfaces were separated, Immersion-fixed In modified Karnovsky solution, and examined under scanning electron microscopy. The tongue surface of the ostrich was smooth, without lingual papillae, and covered by stratified non-keratinized epithelium. In the submucosal layer, mucous salivary glands were surrounded by connective-tissue capsules, with septa dividing the glands Into lobes. Numerous salivary gland ducts of different sizes and connective-tissue laminae dividing each opening could be clearly seen in scanning electron microscope Images. The ventral surface had fewer openings than the dorsal surface. In samples treated with NaOH, connective-tissue papillae from the dorsal region were oriented posteriorly