800 research outputs found
A new hybrid distribution paradigm: Integrating drones in medicines delivery
This paper analyses a new hybrid paradigm resulting from the integration of unmanned aerial vehicles (UAV), commonly referred to as drones, in logistics and distribution processes. This work is motivated by a real application, where the company Connect Robotics, the first drone delivery provider in Portugal, made a partnership with a pharmacy located at a rural region to start implementing the delivery of medicines by drone. The pharmacy receives orders throughout the day and has to deliver in the same day with tight lead-times. The resulting problem is modelled as a Dynamic Parallel Drone Scheduling Vehicle Routing Problem with Lead-Time. A solution method is devised to solve it, thus helping the pharmacist to plan the car and drone delivery routes during the day. The results obtained on real instances revealed that the solution method is effective when compared to the optimal solutions of the static version of the problem, since the dynamic solution only differs, on average, about 7% from the static one. Moreover, some managerial insights about the impact of adding drones to the distribution operation are discussed, namely the economic and environmental impacts with cost savings up to 41% and reduction of monthly CO2 emissions of 310 kg, the use of spare batteries which increase the benefit from 16% to 41%, and same-day versus next-day delivery
Intense beam of metastable Muonium
Precision spectroscopy of the Muonium Lamb shift and fine structure requires
a robust source of 2S Muonium. To date, the beam-foil technique is the only
demonstrated method for creating such a beam in vacuum. Previous experiments
using this technique were statistics limited, and new measurements would
benefit tremendously from the efficient 2S production at a low energy muon
( keV) facility. Such a source of abundant low energy has
only become available in recent years, e.g. at the Low-Energy Muon beamline at
the Paul Scherrer Institute. Using this source, we report on the successful
creation of an intense, directed beam of metastable Muonium. We find that even
though the theoretical Muonium fraction is maximal in the low energy range of
keV, scattering by the foil and transport characteristics of the beamline
favor slightly higher energies of keV. We estimate that
an event detection rate of a few events per second for a future Lamb shift
measurement is feasible, enabling an increase in precision by two orders of
magnitude over previous determinations
Determination of fatty acids profile in original brown cows dairy products and relationship with alpine pasture farming system
This study aimed to evaluate the relationships between fatty acids and the pattern that most contributes to discriminate between two farming systems, in which the main difference was the practice, or not, of alpine summer-grazing. Milk and cheese were sampled every month in two farms of Original Brown cows identical under geographical location and management during no grazing season point of view in the 2018 season. Fatty acids concentrations were determined by gas chromatography. The principal component analysis extracted three components (PCs). Mammary gland de novo synthetized fatty acids (C14:0, C14:1 n9, and C16:0) and saturated and monosaturated C18 fatty acids (C18:0, C18:1 n9c) were inversely associated in the PC1; PC2 included polyunsaturated C18 fatty acids (C18:2 n6c, C18:3 n3) and C15:0 while conjugated linoleic acid (CLA n9c, n11t) and fatty acids containing 20 or more carbon atoms (C21:0, C20:5 n3) were associated in the PC3. The processes of rumen fermentation and de novo synthesis in mammary gland that are, in turn, influenced by diet, could explain the relationships between fatty acids within each PC. The discriminant analyses showed that the PC2 included the fatty acids profile that best discriminated between the two farming systems, followed by PC3 and, lastly, PC1. This model, if validated, could be an important tool to the dairy industry
Human Computation and Convergence
Humans are the most effective integrators and producers of information,
directly and through the use of information-processing inventions. As these
inventions become increasingly sophisticated, the substantive role of humans in
processing information will tend toward capabilities that derive from our most
complex cognitive processes, e.g., abstraction, creativity, and applied world
knowledge. Through the advancement of human computation - methods that leverage
the respective strengths of humans and machines in distributed
information-processing systems - formerly discrete processes will combine
synergistically into increasingly integrated and complex information processing
systems. These new, collective systems will exhibit an unprecedented degree of
predictive accuracy in modeling physical and techno-social processes, and may
ultimately coalesce into a single unified predictive organism, with the
capacity to address societies most wicked problems and achieve planetary
homeostasis.Comment: Pre-publication draft of chapter. 24 pages, 3 figures; added
references to page 1 and 3, and corrected typ
Different cellular and molecular mechanisms for early and late-onset myelin protein zero mutations
n/
Artificial enantiopure inherently chiral membranes: enantiodiscrimination trough a new “ion-selective like” setup
High-efficiency resolution technology is fundamental for scaling-up separation of enantiomerically pure substances. Membrane technology fulfils this requisite, in fact it is characterized by i) high efficiency, ii) simplicity and iii) convenience for up- and/or down-scaling. Membrane-based chiral resolution can be achieved using either enantioselective or non-enantioselective membranes. Enantioselective membranes can be used for chiral separation of enantiomers because they contain chiral recognition sites. In this frame we have discovered that the electrooligomerization, in acetonitrile as solvent, for 108 deposition cycles, on an ITO electrode support, of our \u201cinherently chiral\u201d benchmark monomer, leads to self-standing racemic or enantiopure membranes. These ones were obtained by simply peeling off the solid deposit from the ITO immersed in water after the electrodeposition in acetonitrile. We have then characterized inherently chiral membranes by a multivariate technique approach (e.g. electrochemical impedance spectroscopy, scanning electron microscopy, BET for surface area and pore size distribution, and atomic force microscopy) comparing the racemic vs enantiopure deposit properties. Considering i) the outstanding enantioselection ability achieved with our both inherently chiral electrode surfaces and media [1-2] and ii) the perfectly specular CD spectra displayed by the two membrane enantiomers, we have decided to implement enantiopure inherently chiral membranes in a \u201cion-selective like\u201d set-up in order to study their enantiorecognition capability (as depicted in Figure on the right). First of all we have verified the potential difference was read correctly through the membrane to allow correct determinations of transmembrane potentials. After that we have tested enantiopure membranes in the presence of chiral charged species (in all configurations for both membranes and internal/external electrode solutions) for determining their enantioselective capability. Preliminary results are very promising and encourage us to perform the scaling up of the membrane electrosynthesis to be used for industrial scopes and to extend the study to other probe useful in the analytical and pharmaceutical field.
References:
[1] S. Arnaboldi, M. Magni, P. R. Mussini, Curr. Op. in Electrochemistry 8 (2018) 60-72.
[2] S. Arnaboldi, S. Grecchi, M. Magni, P.R. Mussini, Curr. Op. in Electrochemistry 7 (2018) 188-199
- …