12 research outputs found

    Technique for Magnetic Susceptibility Determination in the High Doped Semiconductors by Electron Spin Resonance

    Full text link
    Method for determining the magnetic susceptibility in the high doped semiconductors is considered. A procedure that is based on double integration of the positive part of the derivative of the absorption line having a Dyson shape and takes into account the depth of the skin layer is described. Analysis is made for the example of arsenic doped germanium samples at a rather high concentration corresponding to the insulator metal phase transition.Comment: Pages 13, figures 9, references 1

    Edge state magnetism in zigzag-interfaced graphene via spin susceptibility measurements

    Get PDF
    Development of graphene spintronic devices relies on transforming it into a material with a spin order. Attempts to make graphene magnetic by introducing zigzag edge states have failed due to energetically unstable structure of torn zigzag edges. Here, we report on the formation of nanoridges, i.e., stable crystallographically oriented fluorine monoatomic chains, and provide experimental evidence for strongly coupled magnetic states at the graphene-fluorographene interfaces. From the first principle calculations, the spins at the localized edge states are ferromagnetically ordered within each of the zigzag interface whereas the spin interaction across a nanoridge is antiferromagnetic. Magnetic susceptibility data agree with this physical picture and exhibit behaviour typical of quantum spin-ladder system with ferromagnetic legs and antiferromagnetic rungs. The exchange coupling constant along the rungs is measured to be 450 K. The coupling is strong enough to consider graphene with fluorine nanoridges as a candidate for a room temperature spintronics material
    corecore