11 research outputs found

    Molecular basis of microhomology-mediated end-joining by purified full-length Polθ

    Get PDF
    DNA polymerase θ (Polθ) is a unique polymerase-helicase fusion protein that promotes microhomology-mediated end-joining (MMEJ) of DNA double-strand breaks (DSBs). How full-length human Polθ performs MMEJ at the molecular level remains unknown. Using a biochemical approach, we find that the helicase is essential for Polθ MMEJ of long ssDNA overhangs which model resected DSBs. Remarkably, Polθ MMEJ of ssDNA overhangs requires polymerase-helicase attachment, but not the disordered central domain, and occurs independently of helicase ATPase activity. Using single-particle microscopy and biophysical methods, we find that polymerase-helicase attachment promotes multimeric gel-like Polθ complexes that facilitate DNA accumulation, DNA synapsis, and MMEJ. We further find that the central domain regulates Polθ multimerization and governs its DNA substrate requirements for MMEJ. These studies identify unexpected functions for the helicase and central domain and demonstrate the importance of polymerase-helicase tethering in MMEJ and the structural organization of Polθ

    Effects of hydrodynamic impact on water from the viewpoint of cluster theory. Surface tension

    Get PDF
    Variation of surface tension coefficient ? of distilled water under high-energy impact (hydrodynamic cavitation) was studied by the ring separation method. Force impacts on surface tension of water have been studied experimentally. Conditions have been found under which the surface tension coefficient ? decreases to 20%. The paper explains the produced results on the basis of cluster theory of water structure. The experimentally produced relaxation time of the surface tension of cavitation-activated distilled water to initial value has been found to be 3.5 hour

    Nonequilibrium carbon black suspensions used in synthesis of polymer composite material

    Get PDF
    Nowadays polymer matrix-based composite material with various carbon fillers are widely used to protect radioequipment from different interference, to improve characteristics of radar absorbing coatings. Current synthesis processes are sophisticated and rather costly. The challenge is to develop new methods of producing composite materials by efficient knowledge intensive technologies to reduce the cost of products. The paper studies possibility of producing composite material on the basis of elastic polyurethane foam with carbon fillers using polyurethane impregnation in nonequilibrium black carbon suspension. Suspension composition: running water and carbon-bearing powders of nanometer range: fullerene black carbon, Taunite (multi-layer carbon nano tube material), technical carbon T900, wood soot. Nonequilibrium suspension was produced by treatment in hydrodynamic generator of rotor type (cavitation mode). Angular rotation speed of the rotor ω = 10000 rpm

    Molecular basis of microhomology-mediated end-joining by purified full-length Polθ

    No full text
    DNA polymerase θ (Polθ) is a unique polymerase-helicase fusion protein that promotes microhomology-mediated end-joining (MMEJ) of DNA double-strand breaks (DSBs). How full-length human Polθ performs MMEJ at the molecular level remains unknown. Using a biochemical approach, we find that the helicase is essential for Polθ MMEJ of long ssDNA overhangs which model resected DSBs. Remarkably, Polθ MMEJ of ssDNA overhangs requires polymerase-helicase attachment, but not the disordered central domain, and occurs independently of helicase ATPase activity. Using single-particle microscopy and biophysical methods, we find that polymerase-helicase attachment promotes multimeric gel-like Polθ complexes that facilitate DNA accumulation, DNA synapsis, and MMEJ. We further find that the central domain regulates Polθ multimerization and governs its DNA substrate requirements for MMEJ. These studies identify unexpected functions for the helicase and central domain and demonstrate the importance of polymerase-helicase tethering in MMEJ and the structural organization of Polθ

    Publisher Correction: Molecular basis of microhomology-mediated end-joining by purified full-length Polθ (Nature Communications, (2019), 10, 1, (4423), 10.1038/s41467-019-12272-9)

    No full text
    The original version of this Article contained errors in Figure 6. In panel o, the labels incorrectly stated ‘Poleθ’ and “Poleθ + DNA” and should be labelled “Polθ” and “Polθ + DNA”. In the result section, in the sub-section entitled “Polθ Promotes MMEJ of Long ssDNA”, the sentence “Importantly, the ability of Polθ- pol to perform MMEJ on short (≤12 nt) ssDNA (Fig. 1p, left; Supplementary Fig. 3D and 3E), and short (≤15 nt) overhangs, demonstrates it performs interstrand pairing without Polθ-hel”. should read as follow: “Importantly, the ability of Polθ-pol to perform MMEJ on short (≤12 nt) ssDNA (Fig. 1p, left; Supplementary Fig. 3D and 3E), and short (≤15 nt) overhangs, demonstrates that it performs interstrand pairing without Polθ-hel”. In the sub-section entitled “Preventing Intrastrand Pairing Stimulates MMEJ by Polθ-Pol”, the sentence “We predicted that preventing base-pairing opportunities between 3' terminal bases and bases upstream along long the 5' region of long ssDNA substrates would suppress intrastrand pairing and enable interstrand pairing by Polθ-pol (Fig. 3c)”. should read as follows: “We predicted that preventing base-pairing opportunities between 3' terminal bases and bases upstream along the 5' region of long ssDNA substrates would suppress intrastrand pairing and enable interstrand pairing by Polθ-pol (Fig. 3c)”. In the method section, in the “Proteins” sub-section the sentence “Polθ-pol, Polθ-hel and RPA were purified as described”. should read as follows: “Polθ-pol and Polθ-hel were purified as described”. These corrections have now been included in the HTML and pdf of the article. Additionally, a technical problem during the publication process resulted in loss of image quality in Figs. 1, 3 and 4. This has now been corrected in both the PDF and HTML versions of the Article
    corecore