384 research outputs found
Modeling toothpaste brand choice: An empirical comparison of artificial neural networks and multinomial probit model
Copyright @ 2010 Atlantis PressThe purpose of this study is to compare the performances of Artificial Neural Networks (ANN) and Multinomial Probit (MNP) approaches in modeling the choice decision within fast moving consumer goods sector. To do this, based on 2597 toothpaste purchases of a panel sample of 404 households, choice models are built and their performances are compared on the 861 purchases of a test sample of 135 households. Results show that ANN's predictions are better while MNP is useful in providing marketing insight
High-order harmonic generation from Rydberg states at fixed Keldysh parameter
Because the commonly adopted viewpoint that the Keldysh parameter
determines the dynamical regime in strong field physics has long been
demonstrated to be misleading, one can ask what happens as relevant physical
parameters, such as laser intensity and frequency, are varied while is
kept fixed. We present results from our one- and fully three-dimensional
quantum simulations of high-order harmonic generation (HHG) from various bound
states of hydrogen with up to 40, where the laser intensities and the
frequencies are scaled from those for in order to maintain a fixed
Keldysh parameter for all . We find that as we increase
while keeping fixed, the position of the cut-off scales in well
defined manner. Moreover, a secondary plateau forms with a new cut-off,
splitting the HHG plateau into two regions. First of these sub-plateaus is
composed of lower harmonics, and has a higher yield than the second one. The
latter extends up to the semiclassical cut-off. We find that this
structure is universal, and the HHG spectra look the same for all
when plotted as a function of the scaled harmonic order. We investigate the
-, - and momentum distributions to elucidate the physical mechanism
leading to this universal structure
Phase-dependent interference fringes in the wavelength scaling of harmonic efficiency
We describe phase-dependent wavelength scaling of high-order harmonic
generation efficiency driven by ultra-short laser fields in the mid-infrared.
We employ both numerical solution of the time-dependent Schr\"{o}dinger
equation and the Strong Field Approximation to analyze the fine-scale
oscillations in the harmonic yield in the context of channel-closing effects.
We show, by varying the carrier-envelope phase, that the amplitude of these
oscillations depend strongly on the number of returning electron trajectories.
Furthermore, the peak positions of the oscillations vary significantly as a
function of the carrier-envelope phase. Owing to its practical applications, we
also study the wavelength dependence of harmonic yield in the "single-cycle"
limit, and observe a smooth variation in the wavelength scaling originating
from the vanishing fine-scale oscillations.Comment: 5 pages, 4 figure
Quantum network of neutral atom clocks
We propose a protocol for creating a fully entangled GHZ-type state of
neutral atoms in spatially separated optical atomic clocks. In our scheme,
local operations make use of the strong dipole-dipole interaction between
Rydberg excitations, which give rise to fast and reliable quantum operations
involving all atoms in the ensemble. The necessary entanglement between distant
ensembles is mediated by single-photon quantum channels and collectively
enhanced light-matter couplings. These techniques can be used to create the
recently proposed quantum clock network based on neutral atom optical clocks.
We specifically analyze a possible realization of this scheme using neutral Yb
ensembles.Comment: 13 pages, 11 figure
Chemical Abundances Of Open Clusters From High-Resolution Infrared Spectra. I. NGC 6940
We present near-infrared spectroscopic analysis of 12 red giant members of
the Galactic open cluster NGC 6940. High-resolution (R45000) and high
signal-to-noise ratio (S/N > 100) near-infrared H and K band spectra were
gathered with the Immersion Grating Infrared Spectrograph (IGRINS) on the 2.7m
Smith Telescope at McDonald Observatory. We obtained abundances of H-burning
(C, N, O), (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group
(Sc, Ti, Cr, Fe, Co, Ni) and neutron-capture (Ce, Nd, Yb) elements. We report
the abundances of S, P, K, Ce, and Yb in NGC 6940 for the first time. Many OH
and CN features in the H band were used to obtain O and N abundances. C
abundances were measured from four different features: CO molecular lines in
the K band, high excitation C I lines present in both near-infrared and
optical, CH and bands in the optical region. We have also determined
ratios from the R-branch band heads of first overtone (2-0) and
(3-1) (2-0) lines near 23440
\overset{\lower.5em\circ}{\mathrm{A}} and (3-1) lines at about
23730 \overset{\lower.5em\circ}{\mathrm{A}}. We have also investigated the HF
feature at 23358.3 \overset{\lower.5em\circ}{\mathrm{A}}, finding solar
fluorine abundances without ruling out a slight enhancement. For some elements
(such as the group), IGRINS data yield more internally
self-consistent abundances. We also revisited the CMD of NGC 6940 by
determining the most probable cluster members using Gaia DR2. Finally, we
applied Victoria isochrones and MESA models in order to refine our estimates of
the evolutionary stages of our targets.Comment: 16 pages, 10 figure
- …