100 research outputs found

    National politicians are more likely to base their EU policy on the interests of party followers and big business, rather than the electorate as a whole

    Get PDF
    The EU is frequently charged with lacking legitimacy, particularly in cases where national politicians make important decisions outside of national political frameworks in Brussels. David Sanders and Gabor Toka use a pair of identical surveys to highlight the EU preferences of ‘elites’ and national electorates. They argue that while citizens generally take their lead on EU issues from national leaders, politicians are more likely to listen to party supporters and business representatives

    CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis

    Get PDF
    Humoral immunity develops in the spleen during blood-stage Plasmodium infection. This elicits parasite-specific IgM and IgG, which control parasites and protect against malaria. Studies in mice have elucidated cells and molecules driving humoral immunity to Plasmodium, including CD4(+) T cells, B cells, interleukin (IL)-21 and ICOS. IL-6, a cytokine readily detected in Plasmodium-infected mice and humans, is recognized in other systems as a driver of humoral immunity. Here, we examined the effect of infection-induced IL-6 on humoral immunity to Plasmodium. Using P.\ua0chabaudi chabaudi AS (PcAS) infection of wild-type and IL-6(-/-) mice, we found that IL-6 helped to control parasites during primary infection. IL-6 promoted early production of parasite-specific IgM but not IgG. Notably, splenic CD138(+) plasmablast development was more dependent on IL-6 than germinal centre (GC) B-cell differentiation. IL-6 also promoted ICOS expression by CD4(+) T cells, as well as their localization close to splenic B cells, but was\ua0not required for early Tfh-cell development. Finally, IL-6 promoted parasite control, IgM and IgG production, GC B-cell development and ICOS expression by Tfh cells in a second model, Py17XNL infection. IL-6 promotes CD4(+) T-cell activation and B-cell responses during blood-stage Plasmodium infection, which encourages parasite-specific antibody production

    Localization and function of the renal calcium-sensing receptor

    Get PDF
    The ability to monitor changes in the ionic composition of the extracellular environment is a crucial feature that has evolved in all living organisms. The cloning and characterization of the extracellular calcium-sensing receptor (CaSR) from the mammalian parathyroid gland in the early 1990s provided the first description of a cellular, ion-sensing mechanism. This finding demonstrated how cells can detect small, physiological variations in free ionized calcium (Ca 2+) in the extracellular fluid and subsequently evoke an appropriate biological response by altering the secretion of parathyroid hormone (PTH) that acts on PTH receptors expressed in target tissues, including the kidney, intestine, and bone. Aberrant Ca 2+ sensing by the parathyroid glands, as a result of altered CaSR expression or function, is associated with impaired divalent cation homeostasis. CaSR activators that mimic the effects of Ca 2+ (calcimimetics) have been designed to treat hyperparathyroidism, and CaSR antagonists (calcilytics) are in development for the treatment of hypercalciuric disorders. The kidney expresses a CaSR that might directly contribute to the regulation of many aspects of renal function in a PTH-independent manner. This Review discusses the roles of the renal CaSR and the potential impact of pharmacological modulation of the CaSR on renal function

    Noninvasive Assessment of Antenatal Hydronephrosis in Mice Reveals a Critical Role for Robo2 in Maintaining Anti-Reflux Mechanism

    Get PDF
    Antenatal hydronephrosis and vesicoureteral reflux (VUR) are common renal tract birth defects. We recently showed that disruption of the Robo2 gene is associated with VUR in humans and antenatal hydronephrosis in knockout mice. However, the natural history, causal relationship and developmental origins of these clinical conditions remain largely unclear. Although the hydronephrosis phenotype in Robo2 knockout mice has been attributed to the coexistence of ureteral reflux and obstruction in the same mice, this hypothesis has not been tested experimentally. Here we used noninvasive high-resolution micro-ultrasonography and pathological analysis to follow the progression of antenatal hydronephrosis in individual Robo2-deficient mice from embryo to adulthood. We found that hydronephrosis progressed continuously after birth with no spontaneous resolution. With the use of a microbubble ultrasound contrast agent and ultrasound-guided percutaneous aspiration, we demonstrated that antenatal hydronephrosis in Robo2-deficient mice is caused by high-grade VUR resulting from a dilated and incompetent ureterovesical junction rather than ureteral obstruction. We further documented Robo2 expression around the developing ureterovesical junction and identified early dilatation of ureteral orifice structures as a potential fetal origin of antenatal hydronephrosis and VUR. Our results thus demonstrate that Robo2 is crucial for the formation of a normal ureteral orifice and for the maintenance of an effective anti-reflux mechanism. This study also establishes a reproducible genetic mouse model of progressive antenatal hydronephrosis and primary high-grade VUR

    Partial Regulatory T Cell Depletion Prior to Acute Feline Immunodeficiency Virus Infection Does Not Alter Disease Pathogenesis

    Get PDF
    Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4+CD25hiFoxP3+ immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4+ T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection

    A Live-Attenuated HSV-2 ICP0− Virus Elicits 10 to 100 Times Greater Protection against Genital Herpes than a Glycoprotein D Subunit Vaccine

    Get PDF
    Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0− virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A) produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain). In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0− virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein

    How unstable? Volatility and the genuinely new parties in Eastern Europe

    Get PDF
    Measuring of party system stability in Eastern Europe during the first decade of democratic elections presents problems. The traditional quantitative measure - volatility - does not distinguish between the dynamics among incumbent parties and the rise of genuinely new ones. I propose a new additional measure - success of genuinely new parties - and compare it to volatility. The subsequent performance of initially successful genuinely new parties is analysed. While volatility has been remarkably high in East European countries, the genuinely new parties have, in general, not been very successful. Instability of party systems in the region stems rather from the inner dynamics of incumbent actors than from the rise of new contenders

    Corrigendum to: “Measurement of the tt ̄ production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector” [Phys. Lett. B 761 (2016) 136–157]

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (sigma(t (t) over bar)) with a data sample of 3.2fb(-1)of proton-proton collisions at a centre-of-mass energy of root s= 13TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron-muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously sigma(t (t) over bar) and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be:sigma(t (t) over bar) = 818 +/- 8 (stat) +/- 27 (syst) +/- 19 (lumi) +/- 12 (beam) pb,where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
    corecore