657 research outputs found
The ideal energy of classical lattice dynamics
We define, as local quantities, the least energy and momentum allowed by
quantum mechanics and special relativity for physical realizations of some
classical lattice dynamics. These definitions depend on local rates of
finite-state change. In two example dynamics, we see that these rates evolve
like classical mechanical energy and momentum.Comment: 12 pages, 4 figures, includes revised portion of arXiv:0805.335
Thermodynamic cost of reversible computing
Since reversible computing requires preservation of all information
throughout the entire computational process, this implies that all errors that
appear as a result of the interaction of the information-carrying system with
uncontrolled degrees of freedom must be corrected. But this can only be done at
the expense of an increase in the entropy of the environment corresponding to
the dissipation, in the form of heat, of the ``noisy'' part of the system's
energy.
This paper gives an expression of that energy in terms of the effective noise
temperature, and analyzes the relationship between the energy dissipation rate
and the rate of computation. Finally, a generalized Clausius principle based on
the concept of effective temperature is presented.Comment: 5 pages; added two paragraphs and fixed a number of typo
Energy Transport in an Ising Disordered Model
We introduce a new microcanonical dynamics for a large class of Ising systems
isolated or maintained out of equilibrium by contact with thermostats at
different temperatures. Such a dynamics is very general and can be used in a
wide range of situations, including disordered and topologically inhomogenous
systems. Focusing on the two-dimensional ferromagnetic case, we show that the
equilibrium temperature is naturally defined, and it can be consistently
extended as a local temperature when far from equilibrium. This holds for
homogeneous as well as for disordered systems. In particular, we will consider
a system characterized by ferromagnetic random couplings . We show that the dynamics relaxes to steady states,
and that heat transport can be described on the average by means of a Fourier
equation. The presence of disorder reduces the conductivity, the effect being
especially appreciable for low temperatures. We finally discuss a possible
singular behaviour arising for small disorder, i.e. in the limit .Comment: 14 pages, 8 figure
Implementation of three-qubit Toffoli gate in a single step
Single-step implementations of multi-qubit gates are generally believed to
provide a simpler design, a faster operation, and a lower decoherence. For
coupled three qubits interacting with a photon field, a realizable scheme for a
single-step Toffoli gate is investigated. We find that the three qubit system
can be described by four effective modified Jaynes-Cummings models in the
states of two control qubits. Within the rotating wave approximation, the
modified Jaynes-Cummings models are shown to be reduced to the conventional
Jaynes-Cummings models with renormalized couplings between qubits and photon
fields. A single-step Toffoli gate is shown to be realizable with tuning the
four characteristic oscillation periods that satisfy a commensurate condition.
Possible values of system parameters are estimated for single-step Toffli gate.
From numerical calculation, further, our single-step Toffoli gate operation
errors are discussed due to imperfections in system parameters, which shows
that a Toffoli gate with high fidelity can be obtained by adjusting pairs of
the photon-qubit and the qubit-qubit coupling strengthes. In addition, a
decoherence effect on the Toffoli gate operation is discussed due to a thermal
reservoir.Comment: 8 pages, 4 figures, to appear in PR
Three-Qubit Gate Realization Using Single Quantum Particle
Using virtual spin formalism it is shown that a quantum particle with eight
energy levels can store three qubits. The formalism allows to realize a
universal set of quantum gates. Feasible formalism implementation is suggested
which uses nuclear spin-7/2 as a storage medium and radio frequency pulses as
the gates. One pulse realization of all universal gates has been found,
including three-qubit Toffoli gate.Comment: LaTeX, 6 pages, no figures; Submitted to "Pis'ma v Zh. Eksp. Teor.
Fiz.
Quantum lattice gases and their invariants
The one particle sector of the simplest one dimensional quantum lattice gas
automaton has been observed to simulate both the (relativistic) Dirac and
(nonrelativistic) Schroedinger equations, in different continuum limits. By
analyzing the discrete analogues of plane waves in this sector we find
conserved quantities corresponding to energy and momentum. We show that the
Klein paradox obtains so that in some regimes the model must be considered to
be relativistic and the negative energy modes interpreted as positive energy
modes of antiparticles. With a formally similar approach--the Bethe ansatz--we
find the evolution eigenfunctions in the two particle sector of the quantum
lattice gas automaton and conclude by discussing consequences of these
calculations and their extension to more particles, additional velocities, and
higher dimensions.Comment: 19 pages, plain TeX, 11 PostScript figures included with epsf.tex
(ignore the under/overfull \vbox error messages
A simple trapped-ion architecture for high-fidelity Toffoli gates
We discuss a simple architecture for a quantum Toffoli gate implemented using
three trapped ions. The gate, which in principle can be implemented with a
single laser-induced operation, is effective under rather general conditions
and is strikingly robust (within any experimentally realistic range of values)
against dephasing, heating and random fluctuations of the Hamiltonian
parameters. We provide a full characterization of the unitary and
noise-affected gate using three-qubit quantum process tomography
Collaborative Computation in Self-Organizing Particle Systems
Many forms of programmable matter have been proposed for various tasks. We
use an abstract model of self-organizing particle systems for programmable
matter which could be used for a variety of applications, including smart paint
and coating materials for engineering or programmable cells for medical uses.
Previous research using this model has focused on shape formation and other
spatial configuration problems (e.g., coating and compression). In this work we
study foundational computational tasks that exceed the capabilities of the
individual constant size memory of a particle, such as implementing a counter
and matrix-vector multiplication. These tasks represent new ways to use these
self-organizing systems, which, in conjunction with previous shape and
configuration work, make the systems useful for a wider variety of tasks. They
can also leverage the distributed and dynamic nature of the self-organizing
system to be more efficient and adaptable than on traditional linear computing
hardware. Finally, we demonstrate applications of similar types of computations
with self-organizing systems to image processing, with implementations of image
color transformation and edge detection algorithms
A Two-Player Game of Life
We present a new extension of Conway's game of life for two players, which we
call p2life. P2life allows one of two types of token, black or white, to
inhabit a cell, and adds competitive elements into the birth and survival rules
of the original game. We solve the mean-field equation for p2life and determine
by simulation that the asymptotic density of p2life approaches 0.0362.Comment: 7 pages, 3 figure
- …