138 research outputs found
The continuous strength method for steel cross-section design at elevated temperatures
When subjected to elevated temperatures, steel displays a reduction in both strength and stiffness, its yield plateau vanishes and its response becomes increasingly nonlinear with pronounced strain hardening. For steel sections subjected to compressive stresses, the extent to which strain hardening can be exploited (i.e. the strain at which failure occurs) depends on the susceptibility to local buckling. This is reflected in the European guidance for structural fire design EN1993-1-2 [1], which specifies different effective yield strengths for different cross-section classes. Given the continuous rounded nature of the stress–strain curve of structural steel at elevated temperatures, this approach seems overly simplistic and improved accuracy can be obtained if strain-based approaches are employed [2]. Similar observations have been previously made for structural stainless steel design at ambient temperatures and the continuous strength method (CSM) was developed as a rational means to exploit strain hardening at room temperature. This paper extends the CSM to the structural fire design of steel cross-sections. The accuracy of the method is verified by comparing the ultimate capacity predictions with test results extracted from the literature. It is shown that the CSM offers more accurate ultimate capacity predictions than current design methods throughout the full temperature range that steel structures are likely to be exposed to during a fire. Moreover due to its strain-based nature, the proposed methodology can readily account for the effect of restrained thermal expansion on the structural response at cross-sectional level
Turbulent Characteristics of Two-Phase, Gas-Liquid Stratified Channel Flow
The turbulence characteristics of the bulk phases were studied in a stratified, two-dimensional, gas- liquid channel flow. Initial results are presented comparing mean velocity and turbulent intensity profiles with those obtained in a prior study at the same bulk phase Reynolds numbers. The results indicate that comparison of two realizations of stratified gas- liquid flow cannot be adequately done on the basis of bulk-phase Reynolds numbers. Comparisons must be based on some more fundamental relationships involving the gas-liquid interactions
Superfast non-linear diffusion: capillary transport in particulate porous media
The migration of liquids in porous media, such as sand, has been commonly considered at high saturation levels with liquid pathways at pore dimensions. In this letter we reveal a low saturation regime observed in our experiments with droplets of extremely low volatility liquids deposited on sand. In this regime the liquid is mostly found within the grain surface roughness and in the capillary bridges formed at the contacts between the grains. The bridges act as variable-volume reservoirs and the flow is driven by the capillary pressure arising at the wetting front according to the roughness length scales. We propose that this migration (spreading) is the result of interplay between the bridge volume adjustment to this pressure distribution and viscous losses of a creeping flow within the roughness. The net macroscopic result is a special case of non-linear diffusion described by a superfast diffusion equation (SFDE) for saturation with distinctive mathematical character. We obtain solutions to a moving boundary problem defined by SFDE that robustly convey a time power law of spreading as seen in our experiments
Recommended from our members
In-vessel coolability and retention of a core melt. Volume 1
The efficacy of external flooding of a reactor vessel as a severe accident management strategy is assessed for an AP600-like reactor design. The overall approach is based on the Risk Oriented Accident Analysis Methodology (ROAAM), and the assessment includes consideration of bounding scenarios and sensitivity studies, as well as arbitrary parametric evaluations that allow the delineation of the failure boundaries. Quantification of the input parameters is carried out for an AP600-like design, and the results of the assessment demonstrate that lower head failure is physically unreasonable. Use of this conclusion for any specific application is subject to verifying the required reliability of the depressurization and cavity-flooding systems, and to showing the appropriateness (in relation to the database presented here, or by further testing as necessary) of the thermal insulation design and of the external surface properties of the lower head, including any applicable coatings. The AP600 is particularly favorable to in-vessel retention. Some ideas to enhance the assessment basis as well as performance in this respect, for applications to larger and/or higher power density reactors are also provided
Recommended from our members
In-vessel coolability and retention of a core melt. Volume 2
The efficacy of external flooding of a reactor vessel as a severe accident management strategy is assessed for an AP600-like reactor design. The overall approach is based on the Risk Oriented Accident Analysis Methodology (ROAAM), and the assessment includes consideration of bounding scenarios and sensitivity studies, as well as arbitrary parametric evaluations that allow the delineation of the failure boundaries. Quantification of the input parameters is carried out for an AP600-like design, and the results of the assessment demonstrate that lower head failure is physically unreasonable. Use of this conclusion for any specific application is subject to verifying the required reliability of the depressurization and cavity-flooding systems, and to showing the appropriateness (in relation to the database presented here, or by further testing as necessary) of the thermal insulation design and of the external surface properties of the lower head, including any applicable coatings. The AP600 is particularly favorable to in-vessel retention. Some ideas to enhance the assessment basis as well as performance in this respect, for applications to larger and/or higher power density reactors are also provided
Thermal Transport in Micro- and Nanoscale Systems
Small-scale (micro-/nanoscale) heat transfer has broad and exciting range of applications. Heat transfer at small scale quite naturally is influenced – sometimes dramatically – with high surface area-to-volume ratios. This in effect means that heat transfer in small-scale devices and systems is influenced by surface treatment and surface morphology. Importantly, interfacial dynamic effects are at least non-negligible, and there is a strong potential to engineer the performance of such devices using the progress in micro- and nanomanufacturing technologies. With this motivation, the emphasis here is on heat conduction and convection. The chapter starts with a broad introduction to Boltzmann transport equation which captures the physics of small-scale heat transport, while also outlining the differences between small-scale transport and classical macroscale heat transport. Among applications, examples are thermoelectric and thermal interface materials where micro- and nanofabrication have led to impressive figure of merits and thermal management performance. Basic of phonon transport and its manipulation through nanostructuring materials are discussed in detail.
Small-scale single-phase convection and the crucial role it has played in developing the thermal management solutions for the next generation of electronics and energy-harvesting devices are discussed as the next topic. Features of microcooling platforms and physics of optimized thermal transport using microchannel manifold heat sinks are discussed in detail along with a discussion of how such systems also facilitate use of low-grade, waste heat from data centers and photovoltaic modules.
Phase change process and their control using surface micro-/nanostructure are discussed next. Among the feature considered, the first are microscale heat pipes where capillary effects play an important role. Next the role of nanostructures in controlling nucleation and mobility of the discrete phase in two-phase processes, such as boiling, condensation, and icing is explained in great detail. Special emphasis is placed on the limitations of current surface and device manufacture technologies while also outlining the potential ways to overcome them. Lastly, the chapter is concluded with a summary and perspective on future trends and, more importantly, the opportunities for new research and applications in this exciting field
- …