5,505 research outputs found

    Observations Upon the Oral Mucosa of the African

    Get PDF
    A CAJM article on dentistry as practiced in Botswana (formerly Bechuanaland Protectorate) in the 1950's Africa.The oral cavity, quite apart from those structures properly included in the realm of dentistry, is of great clinical importance, for it lends itself readily to inspection and examination and, like the eye, can reflect the presence of disease in other regions. This note describes methods of examination and the findings thereof which, although simple, have yet been found of use in diagnosis, and to some degree in following the course of certain systemic diseases, particularly of malnutrition. It is to be emphasised that as the meaning and significance of these observations are still obscure, and much further inquiry is necessary for their clarification, theoretical considerations and implications will not be discussed. The mucosae of the oral cavity to be considered are (a) the lingual mucosa; (b) the buccal mucosa

    Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study

    Get PDF
    Rhenium diboride is a recently recognized ultra-incompressible superhard material. Here we report the electronic (e), phonon (p), e-p coupling and thermal properties of ReB2_2 from first-principles density-functional theory (DFT) calculations and neutron scattering measurements. Our calculated elastic constants (c11c_{11} = 641 GPa, c12c_{12} = 159 GPa, c13c_{13} = 128 GPa, c33c_{33} = 1037 GPa, and c44c_{44} = 271 GPa), bulk modulus (BB ≈\approx 350 GPa) and hardness (HH ≈\approx 46 GPa) are in good agreement with the reported experimental data. The calculated phonon density of states (DOS) agrees very well with our neutron vibrational spectroscopy result. Electronic and phonon analysis indicates that the strong covalent B-B and Re-B bonding is the main reason for the super incompressibility and hardness of ReB2_2. The thermal expansion coefficients, calculated within the quasi-harmonic approximation and measured by neutron powder diffraction, are found to be nearly isotropic in aa and cc directions and only slightly larger than that of diamond in terms of magnitude. The excellent agreement found between calculations and experimental measurements indicate that first-principles calculations capture the main interactions in this class of superhard materials, and thus can be used to search, predict, and design new materials with desired properties.Comment: submitted to pr

    Improvement of Renormalization-Scale Uncertainties Within Empirical Determinations of the b-Quark Mass

    Full text link
    Accurate determinations of the MS-bar b-quark mass mb(mb)m_b(m_b) from σ(e+e−→hadrons)\sigma(e^+e^-\to{\rm hadrons}) experimental data currently contain three comparable sources of uncertainty; the experimental uncertainty from moments of this cross-section, the uncertainty associated with αs(Mz)\alpha_s(M_z), and the theoretical uncertainty associated with the renormalization scale. Through resummation of all logarithmic terms explicitly determined in the perturbative series by the renormalization-group (RG) equation, it is shown that the renormalization-scale dependence is virtually eliminated as a source of theoretical uncertainty in mb(mb)m_b(m_b). This resummation also reduces the estimated effect of higher-loop perturbative contributions, further reducing the theoretical uncertainties in mb(mb)m_b(m_b). Furthermore, such resummation techniques improve the agreement between the values of the MS-bar b-quark mass extracted from the various moments of R(s)=σ(e+e−→hadrons)/σptR(s)=\sigma(e^+e^-\to{\rm hadrons})/\sigma_{pt} [σpt=4πα2/(3s)\sigma_{pt}=4\pi\alpha^2/(3s)], obviating the need to choose an optimummoment for determining mb(mb)m_b(m_b). Resummation techniques are also shown to reduce renormalization-scale dependence in the relation between b-quark MS-bar and pole mass and in the relation between the pole and 1S1S mass.Comment: 19 pages, latex2e, 6 eps figures contained in latex file. Errors corrected in equations (20)--(22

    Magnetic spectrum of the two-dimensional antiferromagnet La2CoO4 studied by inelastic neutron scattering

    Full text link
    We report measurements of the magnetic excitation spectrum of the layered antiferromagnet La2CoO4 by time-of-flight neutron inelastic scattering. In the energy range probed in our experiments (0-250 meV) the magnetic spectrum consists of spin-wave modes with strong in-plane dispersion extending up to 60 meV, and a nearly dispersionless peak at 190 meV. The spin-wave modes exhibit a small (~1 meV) dispersion along the magnetic zone boundary. We show that the magnetic spectrum can be described very well by a model of a Heisenberg antiferromagnet that includes the full spin and orbital degrees of freedom of Co2+ in an axially-distorted crystal field. The collective magnetic dynamics are found to be controlled by dominant nearest-neighbour exchange interactions, strong XY-like single-ion anisotropy and a substantial unquenched orbital angular momentum.Comment: 8 pages, 7 figure

    Naturally occurring bacteriophages lyse a large proportion of canine and feline uropathogenic Escherichia coli isolates in vitro

    Get PDF
    We investigated the feasibility of bacteriophage therapy to combat canine and feline Escherichia coli urinary tract infections (UTIs) by testing the in vitro lytic ability of 40 naturally occurring bacteriophages on 53 uropathogenic E. coli (UPEC). The mean number of UPEC strains lysed by an individual bacteriophage was 21/53 (40%, range 17–72%). In total, 50/53 (94%) of the UPEC strains were killed by one or more of the bacteriophages. Ten bacteriophages lysed P51% of UPEC strains individually and 92% of UPEC strains as a group. Electron microscopy and DNA sequencing of 5 ‘promising’ bacteriophages revealed that 4 bacteriophages belonged to the lytic T4-like genus, while one displayed morphologic similarity to temperate P2-like bacteriophages. Overall, these results indicate that the majority of UPEC are susceptible to lysis by naturally occurring bacteriophages. Thus, bacteriophages show promise as therapeutic agents for treatment of canine and feline E. coli UTIs

    E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet

    Get PDF
    Background/Aims: The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. Methods: The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. Results: Antibody blockade of ECAD reduces glucose-evoked changes in [Ca2+](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. Conclusion: Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion. Copyright (C) 2007 S. Karger AG, Basel

    Magnon Dispersion and Anisotropies in SrCu2_2(BO3_3)2_2

    Full text link
    We study the dispersion of the magnons (triplet states) in SrCu2_2(BO3_3)2_2 including all symmetry-allowed Dzyaloshinskii-Moriya interactions. We can reduce the complexity of the general Hamiltonian to a new simpler form by appropriate rotations of the spin operators. The resulting Hamiltonian is studied by both perturbation theory and exact numerical diagonalization on a 32-site cluster. We argue that the dispersion is dominated by Dzyaloshinskii-Moriya interactions. We point out which combinations of these anisotropies affect the dispersion to linear-order, and extract their magnitudes.Comment: 11 pages, 7 figures, 1 table, v2 conclusion shortened, figs clarifie

    Longitudinal SDW order in a quasi-1D Ising-like quantum antiferromagnet

    Full text link
    From neutron diffraction measurements on a quasi-1D Ising-like Co2+^{\rm 2+} spin compound BaCo2_{\rm 2}V2_{\rm 2}O8_{\rm 8}, we observed an appearance of a novel type of incommensurate ordering in magnetic fields. This ordering is essentially different from the N{\' e}el-type ordering, which is expected for the classical system, and is caused by quantum fluctuation inherent in the quantum spin chain. A Tomonaga-Luttinger liquid (TLL) nature characteristic of the gapless quantum 1D system is responsible for the realization of the incommensurate ordering.Comment: 4pages, 4figur
    • …
    corecore