7 research outputs found
Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia
<p>Abstract</p> <p>Background</p> <p>In Cambodia, malaria transmission is low and most cases occur in forested areas. Sero-epidemiological techniques can be used to identify both areas of ongoing transmission and high-risk groups to be targeted by control interventions. This study utilizes repeated cross-sectional data to assess the risk of being malaria sero-positive at two consecutive time points during the rainy season and investigates who is most likely to sero-convert over the transmission season.</p> <p>Methods</p> <p>In 2005, two cross-sectional surveys, one in the middle and the other at the end of the malaria transmission season, were carried out in two ecologically distinct regions in Cambodia. Parasitological and serological data were collected in four districts. Antibodies to <it>Plasmodium falciparum </it>Glutamate Rich Protein (GLURP) and <it>Plasmodium vivax </it>Merozoite Surface Protein-1<sub>19 </sub>(MSP-1<sub>19</sub>) were detected using Enzyme Linked Immunosorbent Assay (ELISA). The force of infection was estimated using a simple catalytic model fitted using maximum likelihood methods. Risks for sero-converting during the rainy season were analysed using the Classification and Regression Tree (CART) method.</p> <p>Results</p> <p>A total of 804 individuals participating in both surveys were analysed. The overall parasite prevalence was low (4.6% and 2.0% for <it>P. falciparum </it>and 7.9% and 6.0% for <it>P. vivax </it>in August and November respectively). <it>P. falciparum </it>force of infection was higher in the eastern region and increased between August and November, whilst <it>P. vivax </it>force of infection was higher in the western region and remained similar in both surveys. In the western region, malaria transmission changed very little across the season (for both species). CART analysis for <it>P. falciparum </it>in the east highlighted age, ethnicity, village of residence and forest work as important predictors for malaria exposure during the rainy season. Adults were more likely to increase their antibody responses to <it>P. falciparum </it>during the transmission season than children, whilst members of the Charay ethnic group demonstrated the largest increases.</p> <p>Discussion</p> <p>In areas of low transmission intensity, such as in Cambodia, the analysis of longitudinal serological data enables a sensitive evaluation of transmission dynamics. Consecutive serological surveys allow an insight into spatio-temporal patterns of malaria transmission. The use of CART enabled multiple interactions to be accounted for simultaneously and permitted risk factors for exposure to be clearly identified.</p
Presence of Anopheles culicifacies B in Cambodia established by the PCR-RFLP assay developed for the identification of Anopheles minimus species A and C and four related species
A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay developed for identification of five species of the Anopheles minimus Theobald group and a related mosquito species of the Myzomyia Series (Diptera: Culicidae) was applied to morphologically identified adult female specimens collected in Ratanakiri Province, north-eastern Cambodia. In addition to finding An. aconitus Dönitz, An. minimus species A and An. pampanai Büttiker & Beales, some specimens showed a new restriction banding pattern. Siblings of specimens that exhibited this new PCR-RFLP pattern were morphologically identified as An. culicifacies James sensu lato. Based on nucleotide sequences of the ribonuclear DNA internal transcribed spacer 2 region (ITS2) and the mitochondrial cytochrome oxidase I gene (COI), these specimens were recognized as An. culicifacies species B (sensu Green & Miles, 1980), the first confirmed record of the An. culicifacies complex from Cambodia. This study shows that the PCR-RFLP assay can detect species not included in the initial set-up and is capable of identifying at least seven species of the Myzomyia Series, allowing better definition of those malaria vector and non-vector anophelines in South-east Asia
Investigation of ecological and environmental determinants for the presence of questing Ixodes ricinus (Acari : Ixodidae) on Gower, South Wales
Medlock J.M., Pietzsch M.E, Patel-Rice N.V, Jones, L, Kerrod E., Avenell, D., Los, S., Ratcliffe, N. A., Leach S., & Butt T. M. 2008. Investigation of ecological and environmental determinants for the presence of questing Ixodes ricinus (Acari: Ixodidae) on Gower, South Wales. J. Medical Entomology 45: 314-32
Anopheles (Cellia) epiroticus (Diptera: Culicidae), a new malaria vector species in the Southeast Asian sundaicus complex
Anopheles sundaicus species A of the Southeast Asian A. sundaicus complex is formally named Anopheles epiroticus Linton & Harbach based on DNA sequence differentiation of the whole nuclear ITS2 region and a portion of both the cytochrome b and cytochrome c oxidase I mitochondrial genes. Detailed comparative morphological studies of the adult, larval and pupal stages did not reveal any differential or diagnostic differences that reliably distinguish A. epiroticus from A. sundaicus s.s. Information is provided on the bionomics and systematics of the new species