407 research outputs found
Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study
Form resistance (Phi) is a dimensionless number expressing how much slower or faster a particle of any form sinks in a fluid medium than the sphere of equivalent volume. Form resistance factors of PVC models of phytoplankton sinking in glycerin were measured in a large aquarium (0.6 x 0.6 x 0.95 m). For cylindrical forms, a positive relationship was found between Phi and length/ width ratio. Coiling decreased Phi in filamentous forms. Form resistance of Asterionella colonies increased from single cells up to 6-celled colonies than remained nearly constant. For Fragilaria crotonensis chains, no such upper limit to Phi was observed in chains of up to 20 cells ( longer ones were not measured). The effect of symmetry on Phi was tested in 1 - 6-celled Asterionella colonies, having variable angles between the cells, and in Tetrastrum staurogeniaeforme coenobia, having different spine arrangements. In all cases, symmetric forms had considerably higher form resistance than asymmetric ones. However, for Pediastrum coenobia with symmetric/asymmetric fenestration, no difference was observed with respect to symmetry. Increasing number and length of spines on Tetrastrum coenobia substantially increased Phi. For a series of Staurastrum forms, a significant positive correlation was found between arm-length/cell-width ratio and Phi: protuberances increased form resistance. Flagellates (Rhodomonas, Gymnodinium) had a Phi 1. The highest value ( Phi = 8.1) was established for a 20-celled Fragilaria crotonensis chain. Possible origin of the so-called 'vital component' ( a factor that shows how much slower viable populations sink than morphologically similar senescent or dead ones) is discussed, as is the role of form resistance in evolution of high diversity of plankton morphologies
Sinking versus suspended particle size distributions in the North Pacific Subtropical Gyre
The particle size distribution (PSD) is a fundamental property that influences all aspects of phytoplankton ecology. In particular, the size (e.g., diameter d [μm]) and sinking speed w (m/day) of individual particles are inextricable, but much remains unknown about how d and w are related quantitatively for bulk particulate matter. There is significant interest in inferring sinking mass fluxes from PSDs, but doing so requires knowing how both mass and w scale with d . To this end, using both laser diffraction and imaging, we characterized for the first time both sinking and suspended PSDs in the oligotrophic North Pacific subtropical gyre. Comparing these PSDs via a power law parameterization indicates an approximately linear w ‐to‐d scaling, suggesting particles are more fractal‐like than sphere‐like in this respect. This result is robust across multiple instruments, depths, and sediment trap deployments and is made comparatively precise by a high degree of replication
Can rates of ocean primary production and biological carbon export be related through their probability distributions?
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 954-970, doi:10.1029/2017GB005797.We describe the basis of a theory for interpreting measurements of two key biogeochemical fluxes—primary production by phytoplankton (p, μg C · L−1 · day−1) and biological carbon export from the surface ocean by sinking particles (f, mg C · m−2 · day−1)—in terms of their probability distributions. Given that p and f are mechanistically linked but variable and effectively measured on different scales, we hypothesize that a quantitative relationship emerges between collections of the two measurements. Motivated by the many subprocesses driving production and export, we take as a null model that large‐scale distributions of p and f are lognormal. We then show that compilations of p and f measurements are consistent with this hypothesis. The compilation of p measurements is extensive enough to subregion by biome, basin, depth, or season; these subsets are also well described by lognormals, whose log‐moments sort predictably. Informed by the lognormality of both p and f we infer a statistical scaling relationship between the two quantities and derive a linear relationship between the log‐moments of their distributions. We find agreement between two independent estimates of the slope and intercept of this line and show that the distribution of f measurements is consistent with predictions made from the moments of the p distribution. These results illustrate the utility of a distributional approach to biogeochemical fluxes. We close by describing potential uses and challenges for the further development of such an approach.National Science Foundation Grant Number: OCE-1315201;
Simons Foundation Grant Numbers: 329108, 553242;
National Aeronautics and Space Administration Grant Numbers: NNX16AR47G, NNX16AR49
The annual cycles of phytoplankton biomass
Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine–coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chlorophyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract their dominant periods of variability and the recurrence strength at those periods. Fewer than half (48%) of the series had a dominant 12-month period of variability, commonly expressed as the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of variability, commonly expressed as the spring and autumn or winter and summer blooms of temperate lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not persist over the full series duration at some sites. About a third of the series had no component of variability at either the six- or 12-month period, reflecting a series of irregular pulses of biomass. These findings show that there is high variability of annual phytoplankton cycles across ecosystems, and that climate-driven annual cycles can be obscured by other drivers of population variability, including human disturbance, aperiodic weather events and strong trophic coupling between phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes operating at multiple time scales adds complexity to the challenge of detecting climate-driven trends in aquatic ecosystems where the noise to signal ratio is high
Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period
From June 2004 to December 2007, samples were weekly collected at a fixed station located at the mouth of Ria de Aveiro (West Iberian Margin). We examined the seasonal and inter-annual fluctuations in composition and community structure of the phytoplankton in relation to the main environmental drivers and assessed the influence of the oceano-graphic regime, namely changes in frequency and intensity of upwelling events, over the dynamics of the phytoplankton assemblage. The samples were consistently handled and a final subset of 136 OTUs (taxa with relative abundance > 0.01%) was subsequently submitted to various multivariate analyses. The phytoplankton assemblage showed significant changes at all temporal scales but with an overriding importance of seasonality over longer-(inter-annual) or shorter-term fluctuations (upwelling-related). Sea-surface temperature, salinity and maximum upwelling index were retrieved as the main driver of seasonal change. Seasonal signal was most evident in the fluctuations of chlorophyll a concentration and in the high turnover from the winter to spring phytoplankton assemblage. The seasonal cycle of production and succession was disturbed by upwelling events known to disrupt thermal stratification and induce changes in the phytoplankton assemblage. Our results indicate that both the frequency and intensity of physical forcing were important drivers of such variability, but the outcome in terms of species composition was highly dependent on the available local pool of species and the timing of those events in relation to the seasonal cycle. We conclude that duration, frequency and intensity of upwelling events, which vary seasonally and inter-annually, are paramount for maintaining long-term phytoplankton diversity likely by allowing unstable coexistence and incorporating species turnover at different scales. Our results contribute to the understanding of the complex mechanisms of coastal phytoplankton dynamics in relation to changing physical forcing which is fundamental to improve predictability of future prospects under climate change.Portuguese Foundation for Science and Technology (FCT, Portugal) [SFRH/BPD/ 94562/2013]; FEDER funds; national funds; CESAM [UID/AMB/50017]; FCT/MEC through national funds; FEDERinfo:eu-repo/semantics/publishedVersio
The viscosity effect on marine particle flux: A climate relevant feedback mechanism
Oceanic uptake and long-term storage of atmospheric carbon dioxide (CO2) are strongly driven by the marine “biological pump,” i.e., sinking of biotically fixed inorganic carbon and nutrients from the surface into the deep ocean (Sarmiento and Bender, 1994; Volk and Hoffert, 1985). Sinking velocity of marine particles depends on seawater viscosity, which is strongly controlled by temperature (Sharqawy et al., 2010). Consequently, marine particle flux is accelerated as ocean temperatures increase under global warming (Bach et al., 2012). Here we show that this previously overlooked “viscosity effect” could have profound impacts on marine biogeochemical cycling and carbon uptake over the next centuries to millennia. In our global warming simulation, the viscosity effect accelerates particle sinking by up to 25%, thereby effectively reducing the portion of organic matter that is respired in the surface ocean. Accordingly, the biological carbon pump's efficiency increases, enhancing the sequestration of atmospheric CO2 into the ocean. This effect becomes particularly important on longer time scales when warming reaches the ocean interior. At the end of our simulation (4000 A.D.), oceanic carbon uptake is 17% higher, atmospheric CO2 concentration is 180 ppm lower, and the increase in global average surface temperature is 8% weaker when considering the viscosity effect. Consequently, the viscosity effect could act as a long-term negative feedback mechanism in the global climate system
Mechanistic origins of variability in phytoplankton dynamics. Part II: analysis of mesocosm blooms under climate change scenarios
Driving factors of phytoplankton spring blooms have been discussed since long, but rarely analyzed quantitatively. Here, we use a mechanistic size-based ecosystem model to reconstruct observations made during the Kiel mesocosm experiments (2005–2006). The model accurately hindcasts highly variable bloom developments including community shifts in cell size. Under low light, phytoplankton dynamics was mostly controlled by selective mesozooplankton grazing. Selective grazing also explains initial dominance of large diatoms under high light conditions. All blooms were mainly terminated by aggregation and sedimentation. Allometries in nutrient uptake capabilities led to a delayed, post-bloom dominance of small species. In general, biomass and trait dynamics revealed many mutual dependencies, while growth factors decoupled from the respective selective forces. A size shift induced by one factor often changed the growth dependency on other factors. Within climate change scenarios, these indirect effects produced large sensitivities of ecosystem fluxes to the size distribution of winter phytoplankton. These sensitivities exceeded those found for changes in vertical mixing, whereas temperature changes only had minimal impacts
Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump
The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean
- …