5,223 research outputs found

    Band Electronic Structure of One- and Two-Dimensional Pentacene Molecular Crystals

    Get PDF
    We report EHT calculations of the band electronic structure of substituted pentacene derivatives and the polymorphs of the parent compound. The results show that there are wide disparities among the bandwidths and electronic dimensionalities of these compounds. The parent pentacene polymorphs are 2-dimensional in their band electronic structure with moderate dispersions; the bandwidths in the 14.1 Ã… d-spacing polymorph are noticeably larger than for the 14.5 Ã… d-spacing polymorph, reported by Campbell. Whereas the parent pentacene polymorphs adopt the well-known herringbone packing, the new, substituted pentacenes are noticeably different in their solid state structures and this is reflected in the band electronic structures. TMS adopts a highly 1-dimensional structure that leads to a large bandwidth along the stacking direction; TIPS also adopts a stacked structure, but because the molecules are laterally interleaved in the fashion of bricks in a wall, this compound is strongly 2-dimensional.

    Infinite Layer LaNiO(2): Ni(1+)is not Cu(2+)

    Full text link
    The Ni ion in LaNiO2_2 has the same formal ionic configuration 3d93d^9 as does Cu in isostructural CaCuO2_2, but it is reported to be nonmagnetic and probably metallic whereas CaCuO2_2 is a magnetic insulator. From ab initio calculations we trace its individualistic behavior to (1) reduced 3d−2p3d-2p mixing due to an increase of the separation of site energies (ϵd−ϵp\epsilon_d - \epsilon_p) of at least 2 eV, and (2) important Ni 3d(3z2−r2)3d(3z^2-r^2) mixing with La 5d(3z2−r2)5d(3z^2-r^2) states that leads to Fermi surface pockets of La 5d5d character that hole-dope the Ni 3d band.Correlation effects do not appear to be large in LaNiO2_2. However, ad hoc increase of the intraatomic repulsion on the Ni site (using the LDA+U method) is found to lead to a novel correlated state: (i) the transition metal d(x2−y2)d(x^2-y^2) and d(3z2−r2)d(3z^2-r^2) states undergo consecutive Mott transitions, (ii) their moments are antialigned leading (ideally) to a "singlet" ion in which there are two polarized orbitals, and (iii) mixing of the upper Hubbard 3d(3z2−r2)3d(3z^2-r^2) band with the La 5d(xy)5d(xy) states leaves considerable transition metal 3d character in a band pinned to the Fermi level. The magnetic configuration is more indicative of a Ni2+^{2+} ion in this limit, although the actual charge changes little with U.Comment: 7 pages, 8 figure
    • …
    corecore