4 research outputs found
Reduction of secondary electron yield for E-cloud mitigation laser ablation surface engineering
Developing a surface with low Secondary Electron Yield (SEY) is one of the main ways of mitigating electron cloud and beam-induced electron multipacting in high-energy charged particle accelerators. In our previous publications, a low SEY < 0.9 for as-received metal surfaces modified by a nanosecond pulsed laser was reported. In this paper, the SEY of laser-treated blackened copper has been investigated as a function of different laser irradiation parameters. We explore and study the influence of micro- and nano-structures induced by laser surface treatment in air of copper samples as a function of various laser irradiation parameters such as peak power, laser wavelength (λ = 355 nm and 1064 nm), number of pulses per point (scan speed and repetition rate) and fluence, on the SEY. The surface chemical composition was determined by x-ray photoelectron spectroscopy (XPS) which revealed that heating resulted in diffusion of oxygen into the bulk and induced the transformation of CuO to sub-stoichiometric oxide. The surface topography was examined with high resolution scanning electron microscopy (HRSEM) which showed that the laser-treated surfaces are dominated by microstructure grooves and nanostructure features
dc magnetometry of niobium thin film superconductors deposited using high power impulse magnetron sputtering
We performed a systematic investigation of the dc magnetic properties of superconducting niobium thin
films deposited by high power impulse magnetron sputtering (HiPIMS) as a function of the main deposition parameters: the temperature, T, of the heated substrate and the applied dc bias voltage, V, during the sputtering process. The measured dc magnetization curves between 0 and 1000 mT were used to calculate the relative volume of each sample into which the applied magnetic field had penetrated, ðΔV=VÞM. The sample deposited at 700°C with −80 V biased substrate exhibited the least penetration by the magnetic field. ðΔV=VÞM appeared to be highly dependent on the bias voltage at both room temperature and 500°C; however, a broad range of bias voltages showed comparatively similar results at increased temperatures of 700°C. Samples deposited at 700°C exhibit smaller upper critical fields, HC2, than samples deposited at room temperature and 500°C, with the lower temperatures exhibiting a greater dependency on the applied bias. The films deposited at 700°C also display a more stable magnetization curve suggesting that an enhanced flux pinning was achieved when compared to lower temperatures. Consequently, films with stable pinning were found to have the most repeatable dc magnetic behavior. Our results are particularly relevant to the superconducting radio-frequency accelerator scientific community where thin films have been suggested as a technology which may ultimately surpass the performance of bulk niobium. They are also relevant to the fundamental area of superconducting thin films and any applied area where thin films produced by HiPIMS are used, such as superconducting electronics
DC magnetism of Niobium thin films
Niobium thin films were deposited onto a-plane sapphire with varying kinetic energy and varying substrate temperature. There were no consistent trends which related the particle energy or substrate temperature to RRR. The sample which displayed the largest RRR of 229 was then compared to both a thin film deposited with similar conditions onto copper substrate and to bulk niobium. DC magnetometry measurements suggest that the mechanism of flux entry into thin film niobium and bulk niobium may vary due to differences in the volumes of both defects and impurities located within the grains. Results also suggest that magnetic flux may penetrate thin films at small fields due to the sample geometry
Low secondary electron yield of laser treated surfaces of copper, aluminium and stainless steel
Reduction of SEY was achieved by surface engineering through laser ablation with a laser operating at • = 355 nm. It was shown that the SEY can be reduced to near or below 1 on copper, aluminium and 316LN stainless steel. The laser treated surfaces show an increased surface resistance, with a wide variation in resistance found de-pending on the exact treatment details. However, a treated copper surface with similar surface resistance to aluminium was produced