225 research outputs found
Equivalence principle in the new general relativity
We study the problem of whether the active gravitational mass of an isolated
system is equal to the total energy in the tetrad theory of gravitation. The
superpotential is derived using the gravitational Lagrangian which is invariant
under parity operation, and applied to an exact spherically symmetric solution.
Its associated energy is found equal to the gravitational mass. The field
equation in vacuum is also solved at far distances under the assumption of
spherical symmetry. Using the most general expression for parallel vector
fields with spherical symmetry, we find that the equality between the
gravitational mass and the energy is always true if the parameters of the
theory , and satisfy the condition, . In the two special cases where either or
is vanishing, however, this equality is not satisfied for the
solutions when some components of the parallel vector fields tend to zero as
for large .Comment: 18 pages, LaTeX, published in Prog. Theor. Phys. 96 No.5 (1996
3D Integrated Micro-solution Plasma for The Treatment of Water - Effects of Discharge Gases -
Methylene blue molecules in aqueous solution have been decomposed by using a novel 3D integratedmicro-solution plasma reactor operated with Ar and He gases. Energy efficiency for methylene-blue decompositionin the case of Ar is relatively higher than that in the case of He. This result suggests thatcheaper Ar gas has brought about superior performance in water purification. In both cases of Ar and He,methylene-blue decomposition efficiency is one order of magnitude higher than that of conventional solutionplasma
General considerations of matter coupling with the self-dual connection
It has been shown for low-spin fields that the use of only the self-dual part
of the connection as basic variable does not lead to extra conditions or
inconsistencies. We study whether this is true for more general chiral action.
We generalize the chiral gravitational action, and assume that half-integer
spin fields are coupled with torsion linearly. The equation for torsion is
solved and substituted back into the generalized chiral action, giving
four-fermion contact terms. If these contact terms are complex, the imaginary
part will give rise to extra conditions for the gravitational and matter field
equations. We study the four-fermion contact terms taking spin-1/2 and spin-3/2
fields as examples.Comment: 16 pages, late
Construction of N = 2 Chiral Supergravity Compatible with the Reality Condition
We construct N = 2 chiral supergravity (SUGRA) which leads to Ashtekar's
canonical formulation. The supersymmetry (SUSY) transformation parameters are
not constrained at all and auxiliary fields are not required in contrast with
the method of the two-form gravity. We also show that our formulation is
compatible with the reality condition, and that its real section is reduced to
the usual N = 2 SUGRA up to an imaginary boundary term.Comment: 16 pages, late
Supersymmetry algebra in N = 1 chiral supergravity
We consider the supersymmetry (SUSY) transformations in the chiral Lagrangian
for supergravity (SUGRA) with the complex tetrad following the method
used in the usual SUGRA, and present the explicit form of the SUSY
trasformations in the first-order form. The SUSY transformations are generated
by two independent Majorana spinor parameters, which are apparently different
from the constrained parameters employed in the method of the 2-form gravity.
We also calculate the commutator algebra of the SUSY transformations on-shell.Comment: 10 pages, late
- …