391 research outputs found

    Anomalous Paramagnetic Magnetization in Mixed State of CeCoIn5_5 single crystals

    Full text link
    Magnetization and torque measurements were performed on CeCoIn5_5 single crystals to study the mixed-state thermodynamics. These measurements allow the determination of both paramagnetic and vortex responses in the mixed-state magnetization. The paramagnetic magnetization is suppressed in the mixed state with the spin susceptibility increasing with increasing magnetic field. The dependence of spin susceptibility on magnetic field is due to the fact that heavy electrons contribute both to superconductivity and paramagnetism and a large Zeeman effect exists in this system. No anomaly in the vortex response was found within the investigated temperature and field range

    Pairing Symmetry of CeCoIn5_5 Detected by In-plane Torque Measurements

    Full text link
    In-plane torque measurements were performed on heavy fermion CeCoIn5_5 single crystals in the temperature TT range 1.8 K T10\leq T \leq 10 K and applied magnetic field HH up to 14 T. The normal-state torque is given by τnH4(1+T/TK)1sin4ϕ\tau_n \propto H^4(1+T/T_K)^{-1}\sin 4\phi. The reversible part of the mixed-state torque, obtained after subtracting the corresponding normal state torque, shows also a four-fold symmetry. In addition, sharp peaks are present in the irreversible torque at angles of π/\pi/4, 3π\pi/4, 5π\pi/4, 7π\pi/4, etc. Both the four-fold symmetry in the reversible torque and the sharp peaks in the irreversible torque of the mixed state imply dxyd_{xy} symmetry of the superconducting order parameter. The field and temperature dependences of the reversible mixed-state torque provide further evidence for dxyd_{xy} wave symmetry. The four-fold symmetry in the normal state has a different origin since it has different field and temperature dependences than the one in the mixed state. The possible reasons of the normal state four-fold symmetry are discussed

    Strong magnetic fluctuations in superconducting state of CeCoIn5_5

    Full text link
    We show results on the vortex core dissipation through current-voltage measurements under applied pressure and magnetic field in the superconducting phase of CeCoIn5_5. We find that as soon as the system becomes superconducting, the vortex core resistivity increases sharply as the temperature and magnetic field decrease. The sharp increase in flux flow resistivity is due to quasiparticle scattering on critical antiferromagnetic fluctuations. The strength of magnetic fluctuations below the superconducting transition suggests that magnetism is complimentary to superconductivity and therefore must be considered in order to fully account for the low-temperature properties of CeCoIn5_5.Comment: 7 pages, 6 figure

    Nonlinear paramagnetic magnetization in the mixed state of CeCoIn_5

    Full text link
    Torque and magnetization measurements in magnetic fields HH up to 14 T were performed on CeCoIn5_5 single crystals. The amplitude of the paramagnetic torque shows an H2.3H^{2.3} dependence in the mixed state and an H2H^{2} dependence in the normal state. In addition, the mixed-state magnetizations for both HcH\parallel c and HabH\parallel ab axes show anomalous behavior after the subtraction of the corresponding paramagnetic contributions as linear extrapolations of the normal-state magnetization. These experimental results point towards a nonlinear paramagnetic magnetization in the mixed state of CeCoIn5_5, which is a result of the fact that both orbital and Pauli limiting effects dominate in the mixed state.Comment: 2 pages, 2 figures, conferenc

    Fermi Surface Reconstruction in CeRh1x_{1-x}Cox_{x}In5_{5}

    Full text link
    The evolution of the Fermi surface of CeRh1x_{1-x}Cox_xIn5_5 was studied as a function of Co concentration xx via measurements of the de Haas-van Alphen effect. By measuring the angular dependence of quantum oscillation frequencies, we identify a Fermi surface sheet with ff-electron character which undergoes an abrupt change in topology as xx is varied. Surprisingly, this reconstruction does not occur at the quantum critical concentration xcx_c, where antiferromagnetism is suppressed to T=0. Instead we establish that this sudden change occurs well below xcx_c, at the concentration x ~ 0.4 where long range magnetic order alters its character and superconductivity appears. Across all concentrations, the cyclotron effective mass of this sheet does not diverge, suggesting that critical behavior is not exhibited equally on all parts of the Fermi surface.Comment: 4 pages, 4 figure

    Scaling Behavior of Angular Dependent Resistivity in CeCoIn5_5: Possible Evidence for d-Wave Density Waves

    Full text link
    In-plane angular dependent resistivity ADR was measured in the non-Fermi liquid regime of CeCoIn5_5 single crystals at temperatures T20T \le 20 K and in magnetic fields HH up to 14 T. Two scaling behaviors were identified in low field region where resistivity shows T-linear dependence, separated by a critical angle θc\theta_{c} which is determined by the anisotropy of CeCoIn5_5; i.e., ADR depends only on the perpendicular (parallel) field component below (above) θc\theta_c. These scaling behaviors and other salient features of ADR are consistent with d-wave density waves

    Evolution of crystalline electric field effects, superconductivity, and heavy fermion behavior in the specific heat of Pr(Os1x_{1-x}Rux_x)4_4Sb12_{12}

    Full text link
    Specific heat C(T)C(T) measurements were made on single crystals of the superconducting filled skutterudite series Pr(Os1x_{1-x}Rux_x)4_4Sb12_{12} down to 0.6 K. Crystalline electric field fits in the normal state produced parameters which were in agreement with previous measurements. Bulk superconductivity was observed for all values of the Ru concentration xx with transition temperatures consistent with previous experiments, confirming a minimum in TcT_{c} at x=0.6x=0.6. The C(T)C(T) data below TcT_{c} appear to be more consistent with power law behavior for x=0x=0 (PrOs4_4Sb12_{12}), and with exponential behavior for 0.05x0.20.05 \leq x \leq 0.2. An enhanced electronic specific heat coefficient γ\gamma was observed for x0.4x \leq 0.4, further supporting x0.6x \simeq 0.6 as a critical concentration where the physical properties abruptly change. Significant enhancement of ΔC/Tc\Delta C/T_{c} above the weak coupling value was only observed for x=0x=0 and x=0.05x=0.05.Comment: 16 pages, 5 figures, submitted to Physical Review B. v2: text added and figures modifie
    corecore