69 research outputs found
ICTV virus taxonomy profile : Sedoreoviridae 2022
Sedoreoviridae is a large family of icosahedral viruses that are usually regarded as non- enveloped with segmented (10â12 linear segments) dsRNA genomes of 18â26 kbp. Sedoreovirids have a broad host range, infecting mammals, birds, crustaceans, arthropods, algae and plants. Some of them have important pathogenic potential for humans (e.g. rotavirus A), livestock (e.g. bluetongue virus) and plants (e.g. rice dwarf virus).Instituto de BiotecnologĂaFil: Matthijnssens, Jelle. University of Leuven; BĂ©lgicaFil: Attoui, Houssam. National Institute for Agricultural Research (INRA); FranciaFil: BĂĄnyai, KrisztiĂĄn. Veterinary Medical Research Institute; HungrĂaFil: Brussaard, Corina P. D. NIOZ Royal Netherlands Institute for Sea Research; PaĂses BajosFil: Brussaard, Corina P. D. University of Utrecht; PaĂses BajosFil: Danthi, Pranav. Indiana University; Estados UnidosFil: Del Vas, Mariana. Instituto Nacional de TecnologĂa Agropecuaria (INTA). Instituto de AgrobiotecnologĂa y BiologĂa Molecular (IABIMO); ArgentinaFil: Dermody, Terence S. University of Pittsburgh. School of Medicine; Estados UnidosFil: Duncan, Roy. Dalhousie University; CanadĂĄFil: FÄng, QĂn. Wuhan Institute of Virology; ChinaFil: Johne, Reimar. German Federal Institute for Risk Assessment; AlemaniaFil: Mertens, Peter P. C. University of Nottingham; Reino UnidoFil: Jaafar, Fauziah Mohd. Ecole Nationale VĂ©tĂ©rinaire dâAlfort; FranciaFil: Patton, John T. Indiana University; Estados UnidosFil: Sasaya, Takahide. National Agriculture and Food Research Organization; JapĂłnFil: Suzuki, Nobuhiro. Okayama University. JapĂłnFil: Wei, Taiyun. Fujian Agriculture and Forestry University; Chin
Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline
Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality
Plant viruses and viroids in Japan
An increasing number of plant viruses and viroids have been reported from all over the world due largely to metavirogenomics approaches with technological innovation. Herein, the official changes of virus taxonomy, including the establishment of megataxonomy and amendments of the codes of virus classification and nomenclature, recently made by the International Committee on Taxonomy of Viruses were summarized. The continued efforts of the plant virology community of Japan to index all plant viruses and viroids occurring in Japan, which represent 407 viruses, including 303 virus species and 104 unclassified viruses, and 25 viroids, including 20 species and 5 unclassified viroids, as of October 2021, were also introduced. These viruses and viroids are collectively classified into 81 genera within 26 families of 3 kingdoms (Shotokuvirae, Orthornavirae, Pararnavirae) across 2 realms (Monodnaviria and Riboviria). This review also overviewed how Japanâs plant virus/viroid studies have contributed to advance virus/viroid taxonomy
Widespread Endogenization of Genome Sequences of Non-Retroviral RNA Viruses into Plant Genomes
Non-retroviral RNA virus sequences (NRVSs) have been found in the chromosomes of vertebrates and fungi, but not plants. Here we report similarly endogenized NRVSs derived from plus-, negative-, and double-stranded RNA viruses in plant chromosomes. These sequences were found by searching public genomic sequence databases, and, importantly, most NRVSs were subsequently detected by direct molecular analyses of plant DNAs. The most widespread NRVSs were related to the coat protein (CP) genes of the family Partitiviridae which have bisegmented dsRNA genomes, and included plant- and fungus-infecting members. The CP of a novel fungal virus (Rosellinia necatrix partitivirus 2, RnPV2) had the greatest sequence similarity to Arabidopsis thaliana ILR2, which is thought to regulate the activities of the phytohormone auxin, indole-3-acetic acid (IAA). Furthermore, partitivirus CP-like sequences much more closely related to plant partitiviruses than to RnPV2 were identified in a wide range of plant species. In addition, the nucleocapsid protein genes of cytorhabdoviruses and varicosaviruses were found in species of over 9 plant families, including Brassicaceae and Solanaceae. A replicase-like sequence of a betaflexivirus was identified in the cucumber genome. The pattern of occurrence of NRVSs and the phylogenetic analyses of NRVSs and related viruses indicate that multiple independent integrations into many plant lineages may have occurred. For example, one of the NRVSs was retained in Ar. thaliana but not in Ar. lyrata or other related Camelina species, whereas another NRVS displayed the reverse pattern. Our study has shown that single- and double-stranded RNA viral sequences are widespread in plant genomes, and shows the potential of genome integrated NRVSs to contribute to resolve unclear phylogenetic relationships of plant species
PKQuest: a general physiologically based pharmacokinetic model. Introduction and application to propranolol
BACKGROUND: A "physiologically based pharmacokinetic" (PBPK) approach uses a realistic model of the animal to describe the pharmacokinetics. Previous PBPKs have been designed for specific solutes, required specification of a large number of parameters and have not been designed for general use. METHODS: This new PBPK program (PKQuest) includes a "Standardhuman" and "Standardrat" data set so that the user input is minimized. It has a simple user interface, graphical output and many new features: 1) An option that uses the measured plasma concentrations to solve for the time course of the gastrointestinal, intramuscular, intraperotineal or skin absorption and systemic availability of a drug â for a general non-linear system. 2) Capillary permeability limitation defined in terms of the permeability-surface area products. 4) Saturable plasma and tissue protein binding. 5) A lung model that includes perfusion-ventilation mismatch. 6) A general optimization routine using either a global (simulated annealing) or local (Powell) minimization applicable to all model parameters. RESULTS: PKQuest was applied to measurements of human propranolol pharmacokinetics and intestinal absorption. A meal has two effects: 1) increases portal blood flow by 50%; and 2) decreases liver metabolism by 20%. There is a significant delay in the oval propranolol absorption in fasting subjects that is absent in fed subjects. The oral absorption of the long acting form of propranolol continues for a period of more than 24 hours. CONCLUSIONS: PKQuest provides a new general purpose, easy to use, freely distributed and physiologically rigorous PBPK software routine
Metabolic State Determines Sensitivity to Cellular Stress in Huntington Disease: Normalization by Activation of PPARÎł
Impairments in mitochondria and transcription are important factors in the pathogenesis of Huntington disease (HD), a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin protein. This study investigated the effect of different metabolic states and peroxisome proliferator-activated receptor Îł (PPARÎł) activation on sensitivity to cellular stressors such as H2O2 or thapsigargin in HD. Striatal precursor cells expressing wild type (STHdhQ7) or mutant huntingtin (STHdhQ111) were prepared in different metabolic conditions (glucose vs. pyruvate). Due to the fact that STHdhQ111 cells exhibit mitochondrial deficits, we expected that in the pyruvate condition, where ATP is generated primarily by the mitochondria, there would be greater differences in cell death between the two cell types compared to the glucose condition. Intriguingly, it was the glucose condition that gave rise to greater differences in cell death. In the glucose condition, thapsigargin treatment resulted in a more rapid loss of mitochondrial membrane potential (ÎΚm), a greater activation of caspases (3, 8, and 9), and a significant increase in superoxide/reactive oxygen species (ROS) in STHdhQ111 compared to STHdhQ7, while both cell types showed similar kinetics of ÎΚm-loss and similar levels of superoxide/ROS in the pyruvate condition. This suggests that bioenergetic deficiencies are not the primary contributor to the enhanced sensitivity of STHdhQ111 cells to stressors compared to the STHdhQ7 cells. PPARÎł activation significantly attenuated thapsigargin-induced cell death, concomitant with an inhibition of caspase activation, a delay in ÎΚm loss, and a reduction of superoxide/ROS generation in STHdhQ111 cells. Expression of mutant huntingtin in primary neurons induced superoxide/ROS, an effect that was significantly reduced by constitutively active PPARÎł. These results provide significant insight into the bioenergetic disturbances in HD with PPARÎł being a potential therapeutic target for HD
Relationship between Symptoms and Gene Expression Induced by the Infection of Three Strains of Rice dwarf virus
BACKGROUND: Rice dwarf virus (RDV) is the causal agent of rice dwarf disease, which often results in severe yield losses of rice in East Asian countries. The disease symptoms are stunted growth, chlorotic specks on leaves, and delayed and incomplete panicle exsertion. Three RDV strains, O, D84, and S, were reported. RDV-S causes the most severe symptoms, whereas RDV-O causes the mildest. Twenty amino acid substitutions were found in 10 of 12 virus proteins among three RDV strains. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the gene expression of rice in response to infection with the three RDV strains using a 60-mer oligonucleotide microarray to examine the relationship between symptom severity and gene responses. The number of differentially expressed genes (DEGs) upon the infection of RDV-O, -D84, and -S was 1985, 3782, and 6726, respectively, showing a correlation between the number of DEGs and symptom severity. Many DEGs were related to defense, stress response, and development and morphogenesis processes. For defense and stress response processes, gene silencing-related genes were activated by RDV infection and the degree of activation was similar among plants infected with the three RDV strains. Genes for hormone-regulated defense systems were also activated by RDV infection, and the degree of activation seemed to be correlated with the concentration of RDV in plants. Some development and morphogenesis processes were suppressed by RDV infection, but the degree of suppression was not correlated well with the RDV concentration. CONCLUSIONS/SIGNIFICANCE: Gene responses to RDV infection were regulated differently depending on the gene groups regulated and the strains infecting. It seems that symptom severity is associated with the degree of gene response in defense-related and development- and morphogenesis-related processes. The titer levels of RDV in plants and the amino acid substitutions in RDV proteins could be involved in regulating such gene responses
Taxonomy of the order Bunyavirales : second update 2018
In October 2018, the order Bunyavirales was amended by inclusion of the family Arenaviridae, abolishment of three families, creation of three new families, 19 new genera, and 14 new species, and renaming of three genera and 22 species. This article presents the updated taxonomy of the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).Non peer reviewe
Taxonomy of the family Arenaviridae and the order Bunyavirales : update 2018
In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.Peer reviewe
2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567â3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S
- âŠ