3,973 research outputs found

    Methods to Determine Neutrino Flux at Low Energies:Investigation of the Low ν\nu Method

    Get PDF
    We investigate the "low-ν\nu" method (developed by the CCFR/NUTEV collaborations) to determine the neutrino flux in a wide band neutrino beam at very low energies, a region of interest to neutrino oscillations experiments. Events with low hadronic final state energy ν<νcut\nu<\nu_{cut} (of 1, 2 and 5 GeV) were used by the MINOS collaboration to determine the neutrino flux in their measurements of neutrino (νμ\nu_\mu) and antineutrino (\nub_\mu) total cross sections. The lowest νμ\nu_\mu energy for which the method was used in MINOS is 3.5 GeV, and the lowest \nub_\mu energy is 6 GeV. At these energies, the cross sections are dominated by inelastic processes. We investigate the application of the method to determine the neutrino flux for νμ\nu_\mu, \nub_\mu energies as low as 0.7 GeV where the cross sections are dominated by quasielastic scattering and Δ\Delta(1232) resonance production. We find that the method can be extended to low energies by using νcut\nu_{cut} values of 0.25 and 0.50 GeV, which is feasible in fully active neutrino detectors such as MINERvA.Comment: 25 pages, 32 figures, to be published in European Physics Journal

    Modelling concentration heterogeneities in streets using the street-network model MUNICH

    Get PDF
    Populations in urban areas are exposed to high local concentrations of pollutants, such as nitrogen dioxide and particulate matter, because of unfavourable dispersion conditions and the proximity to traffic. To simulate these concentrations over cities, models like the street-network model MUNICH (Model of Urban Network of Intersecting Canyons and Highways) rely on parameterizations to represent the air flow and the concentrations of pollutants in streets. In the current version, MUNICH v2.0, concentrations are assumed to be homogeneous in each street segment. A new version of MUNICH, where the street volume is discretized, is developed to represent the street gradients and to better estimate peoples' exposure. Three vertical levels are defined in each street segment. A horizontal discretization is also introduced under specific conditions by considering two zones with a parameterization taken from the Operational Street Pollution Model (OSPM). Simulations are performed over two districts of Copenhagen, Denmark, and one district of greater Paris, France. Results show an improvement in the comparison to observations, with higher concentrations at the bottom of the street, closer to traffic, of pollutants emitted by traffic (NOx, black carbon, organic matter). These increases reach up to 60 % for NO2 and 30 % for PM10 in comparison to MUNICH v2.0. The aspect ratio (ratio between building height and street width) influences the extent of the increase of the first-level concentrations compared to the average of the street. The increase is higher for wide streets (low aspect ratio and often higher traffic) by up to 53 % for NOx and 18 % for PM10. Finally, a sensitivity analysis with regard to the influence of the street network highlights the importance of using the model MUNICH with a network rather than with a single street.</p

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore