187 research outputs found
Low Energy Skyrmion-Skyrmion Scattering
We study the scattering of Skyrmions at low energy and large separation using
the method proposed by Manton of truncation to a finite number of degrees
freedom. We calculate the induced metric on the manifold of the union of
gradient flow curves, which for large separation, to first non-trivial order is
parametrized by the variables of the product ansatz. (presented at the Lake
Louise Winter Institute, 1994)Comment: 6 page
Low energy dynamics of U(1)^{N} Chern-Simons solitons
We apply the adiabatic approximation to investigate the low energy dynamics
of vortices in the parity invariant double self-dual Higgs model with only
mutual Chern-Simons interaction. When distances between solitons are large they
are particles subject to the mutual interaction. The dual formulation of the
model is derived to explain the sign of the statistical interaction. When
vortices of different types pass one through another they behave like charged
particles in magnetic field. They can form a bound state due to the mutual
magnetic trapping. Vortices of the same type exhibit no statistical
interaction. Their short range interactions are analysed. Possible quantum
effects due to the finite width of vortices are discussed.Comment: keywords: vortex, vortices, anyons, fractional statistics, 20 pages
in Latex, accepted for publication in Phys.Rev.D, ( the above keywords
missing in the title were added
Conservation Laws in a First Order Dynamical System of Vortices
Gauge invariant conservation laws for the linear and angular momenta are
studied in a certain 2+1 dimensional first order dynamical model of vortices in
superconductivity. In analogy with fluid vortices it is possible to express the
linear and angular momenta as low moments of vorticity. The conservation laws
are compared with those obtained in the moduli space approximation for vortex
dynamics.Comment: LaTex file, 16 page
Hypersurface Bohm-Dirac models
We define a class of Lorentz invariant Bohmian quantum models for N entangled
but noninteracting Dirac particles. Lorentz invariance is achieved for these
models through the incorporation of an additional dynamical space-time
structure provided by a foliation of space-time. These models can be regarded
as the extension of Bohm's model for N Dirac particles, corresponding to the
foliation into the equal-time hyperplanes for a distinguished Lorentz frame, to
more general foliations. As with Bohm's model, there exists for these models an
equivariant measure on the leaves of the foliation. This makes possible a
simple statistical analysis of position correlations analogous to the
equilibrium analysis for (the nonrelativistic) Bohmian mechanics.Comment: 17 pages, 3 figures, RevTex. Completely revised versio
On field theory quantization around instantons
With the perspective of looking for experimentally detectable physical
applications of the so-called topological embedding, a procedure recently
proposed by the author for quantizing a field theory around a non-discrete
space of classical minima (instantons, for example), the physical implications
are discussed in a ``theoretical'' framework, the ideas are collected in a
simple logical scheme and the topological version of the Ginzburg-Landau theory
of superconductivity is solved in the intermediate situation between type I and
type II superconductors.Comment: 27 pages, 5 figures, LaTe
NS5-Branes, T-Duality and Worldsheet Instantons
The equivalence of NS5-branes and ALF spaces under T-duality is well known.
However, a naive application of T-duality transforms the ALF space into a
smeared NS5-brane, de-localized on the dual, transverse, circle. In this paper
we re-examine this duality, starting from a two-dimensional N=(4,4) gauged
linear sigma model describing Taub-NUT space. After dualizing the circle fiber,
we find that the smeared NS5-brane target space metric receives corrections
from multi-worldsheet instantons. These instantons are identified as
Nielsen-Olesen vortices. We show that their effect is to break the isometry of
the target space, localizing the NS5-brane at a point. The contribution from
the k-instanton sector is shown to be proportional to the weighted integral of
the Euler form over the k-vortex moduli space. The duality also predicts the,
previously unknown, asymptotic exponential decay coefficient of the BPS vortex
solution.Comment: 26 pages. v2: Fourier modes of multi-vortex fermion zero mode
corrected. Reference added. v3: typo correcte
Unique Arrangement of α- and ÎČ-Cells in Human Islets of Langerhans
OBJECTIVE: It is generally admitted that the endocrine cell organization in human islets is different from that of rodent islets. However, a clear description of human islet architecture has not yet been reported. The aim of this work was to describe our observations on the arrangement of human islet cells. RESEARCH DESIGN AND METHODS: Human pancreas specimens and isolated islets were processed for histology. Sections were analyzed by fluorescence microscopy after immunostaining for islet hormones and endothelial cells. RESULTS: In small human islets (40-60 mum in diameter), beta-cells had a core position, alpha-cells had a mantle position, and vessels laid at their periphery. In bigger islets, alpha-cells had a similar mantle position but were found also along vessels that penetrate and branch inside the islets. As a consequence of this organization, the ratio of beta-cells to alpha-cells was constantly higher in the core than in the mantle part of the islets, and decreased with increasing islet diameter. This core-mantle segregation of islet cells was also observed in type 2 diabetic donors but not in cultured isolated islets. Three-dimensional analysis revealed that islet cells were in fact organized into trilaminar epithelial plates, folded with different degrees of complexity and bordered by vessels on both sides. In epithelial plates, most beta-cells were located in a central position but frequently showed cytoplasmic extensions between outlying non-beta-cells. CONCLUSIONS: Human islets have a unique architecture allowing all endocrine cells to be adjacent to blood vessels and favoring heterologous contacts between beta- and alpha-cells, while permitting homologous contacts between beta-cells
Slow Schroedinger dynamics of gauged vortices
Multivortex dynamics in Manton's Schroedinger--Chern--Simons variant of the
Landau-Ginzburg model of thin superconductors is studied within a moduli space
approximation. It is shown that the reduced flow on M_N, the N vortex moduli
space, is hamiltonian with respect to \omega_{L^2}, the L^2 Kaehler form on
\M_N. A purely hamiltonian discussion of the conserved momenta associated with
the euclidean symmetry of the model is given, and it is shown that the
euclidean action on (M_N,\omega_{L^2}) is not hamiltonian. It is argued that
the N=3 flow is integrable in the sense of Liouville. Asymptotic formulae for
\omega_{L^2} and the reduced Hamiltonian for large intervortex separation are
conjectured. Using these, a qualitative analysis of internal 3-vortex dynamics
is given and a spectral stability analysis of certain rotating vortex polygons
is performed. Comparison is made with the dynamics of classical fluid point
vortices and geostrophic vortices.Comment: 22 pages, 2 figure
Vortex Dynamics in Selfdual Maxwell-Higgs Systems with Uniform Background Electric Charge Density
We introduce selfdual Maxwell-Higgs systems with uniform background electric
charge density and show that the selfdual equations satisfied by topological
vortices can be reduced to the original Bogomol'nyi equations without any
background. These vortices are shown to carry no spin but to feel the Magnus
force due to the shielding charge carried by the Higgs field. We also study the
dynamics of slowly moving vortices and show that the spin-statistics theorem
holds to our vortices.Comment: 24 pages + 2 figures ( not included), Cu-TP-611, IASSNS-HEP-93/33,
NSF-ITP-93-13
- âŠ