1,479 research outputs found
Morphological Phase Diagram for Lipid Membrane Domains with Entropic Tension
Circular domains in phase-separated lipid vesicles with symmetric leaflet composition commonly exhibit three stable morphologies: flat, dimpled, and budded. However, stable dimples (i.e., partially budded domains) present a puzzle since simple elastic theories of domain shape predict that only flat and spherical budded domains are mechanically stable in the absence of spontaneous curvature. We argue that this inconsistency arises from the failure of the constant surface tension ensemble to properly account for the effect of entropic bending fluctuations. Formulating membrane elasticity within an entropic tension ensemble, wherein tension represents the free energy cost of extracting membrane area from thermal bending of the membrane, we calculate a morphological phase diagram that contains regions of mechanical stability for each of the flat, dimpled, and budded domain morphologies
Perturbation theory of the space-time non-commutative real scalar field theories
The perturbative framework of the space-time non-commutative real scalar
field theory is formulated, based on the unitary S-matrix. Unitarity of the
S-matrix is explicitly checked order by order using the Heisenberg picture of
Lagrangian formalism of the second quantized operators, with the emphasis of
the so-called minimal realization of the time-ordering step function and of the
importance of the -time ordering. The Feynman rule is established and is
presented using scalar field theory. It is shown that the divergence
structure of space-time non-commutative theory is the same as the one of
space-space non-commutative theory, while there is no UV-IR mixing problem in
this space-time non-commutative theory.Comment: Latex 26 pages, notations modified, add reference
- …