33,154 research outputs found

    Do I Need Crop Insurance? Self Evaluating Crop Insurance as a Risk Management Tool in New York State

    Get PDF
    Crop insurance, Agribusiness, Crop Production/Industries,

    Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission

    Full text link
    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio-loudness of quasars. We consider how these values evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high-redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly both the RLF and mean radio loudness increase for quasars which are argued to have weaker radiation line driven wind components of the broad emission line region. In agreement with past work, we find that the RLF increases with increasing luminosity and decreasing redshift while the mean radio-loudness evolves in the exact opposite manner. This difference in behavior between the mean radio-loudness and the RLF in L-z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.Comment: 55 pages, 28 figures, accepted to A

    Conference Summary: AGN Physics with the Sloan Digital Sky Survey

    Full text link
    The ``AGN Physics with the Sloan Digital Sky Survey'' conference was held at Princeton University in July 2003 to bring together groups working inside and outside of the SDSS collaboration at radio through X-ray wavelengths to discuss the common goal of better understanding the physics of Active Galactic Nuclei (AGN). Although we still do not have a full understanding of AGN, much progress has been made in recent years. In this conference summary, we concentrate on those topics discussed at the meeting where we believe that there has been significant change or where there is a new standard of comparison, as well as on important new trends in AGN research.Comment: 4 pages, no figures; text now fully matches published versio
    corecore