530 research outputs found

    Busy Beaver Scores and Alphabet Size

    Full text link
    We investigate the Busy Beaver Game introduced by Rado (1962) generalized to non-binary alphabets. Harland (2016) conjectured that activity (number of steps) and productivity (number of non-blank symbols) of candidate machines grow as the alphabet size increases. We prove this conjecture for any alphabet size under the condition that the number of states is sufficiently large. For the measure activity we show that increasing the alphabet size from two to three allows an increase. By a classical construction it is even possible to obtain a two-state machine increasing activity and productivity of any machine if we allow an alphabet size depending on the number of states of the original machine. We also show that an increase of the alphabet by a factor of three admits an increase of activity

    Observation of thickness dependence of magnetic surface anisotropy in ultrathin amorphous films.

    Get PDF
    Copyright © 1990 The American Physical SocietyFerromagnetic resonance (FMR) and SQUID magnetometry measurements have been made on multilayers of amorphous Fe70B30/Ag. The dependence of the magnetic surface anisotropy constant Ks on the magnetic layer thickness 2L has been determined in the range 1.6 Å16.5 Å, but decreases monotonically towards zero as 2L decreases from 16.5 Å towards zero. The FMR results can be well described by a theory developed for ultrathin amorphous ferromagnetic layers

    The case for interoperability in global research

    No full text
    ”This Discussion Paper, focussing on defining interoperability in a global research sense, is the first of two that will capture the main threads of discussion from a recent symposium hosted jointly by FEAST and The University of Queensland (UQ) on Enhancing interoperability in the emerging global research order." - page 2Australian National Universit

    Interferometric measurement of an axi-symmetric density field

    No full text
    We have used Fourier transform techniques and an Abel deconvolution to analyse a finite-fringe inter- ferogram produced by an axisymmetric shock wave flow, to produce a density map that can be used for the validation of a numerical model. The Abel deconvolution method enables the use of a basis that is particularly suitable for modeling phase maps produced by shock wave flows. A steady flow problem is studied, and compared with a numerical simulation. Good agreement between theoretical and experimental results are obtained

    Stability of Bose Einstein condensates of hot magnons in YIG

    Full text link
    We investigate the stability of the recently discovered room temperature Bose-Einstein condensate (BEC) of magnons in Ytrrium Iron Garnet (YIG) films. We show that magnon-magnon interactions depend strongly on the external field orientation, and that the BEC in current experiments is actually metastable - it only survives because of finite size effects, and because the BEC density is very low. On the other hand a strong field applied perpendicular to the sample plane leads to a repulsive magnon-magnon interaction; we predict that a high-density magnon BEC can then be formed in this perpendicular field geometry.Comment: Submitted to Physical Review Letter

    Revealing the origin of the vertical hysteresis loop shifts in an exchange biased Co/YMnO3_3 bilayer

    Full text link
    We have investigated exchange bias effects in bilayers composed by the antiferromagnetic o-YMnO3_3 and ferromagnetic Co thin film by means of SQUID magnetometry, magnetoresistance, anisotropic magnetoresistance and planar Hall effect. The magnetization and magnetotransport properties show pronounced asymmetries in the field and magnetization axes of the field hysteresis loops. Both exchange bias parameters, the exchange bias field HE(T)H_{E}(T) as well as the magnetization shift ME(T)M_E(T), vanish around the N\'eel temperature TN45T_N \simeq 45 K. We show that the magnetization shift ME(T)M_E(T) is also measured by a shift in the anisotropic magnetoresistance and planar Hall resistance having those a similar temperature dependence as the one obtained from magnetization measurements. Because the o-YMnO3_3 film is highly insulating, our results demonstrate that the ME(T)M_E(T) shift originates at the interface within the ferromagnetic Co layer. To show that the main results obtained are general and not because of some special characteristics of the o-YMO3_3 layer, similar measurements were done in Co/CoO micro-wires. The transport and magnetization characterization of the micro-wires supports the main conclusion that these effects are related to the response of the ferromagnetic Co layer at the interface.Comment: 16 Figures, in press at J. Phys.: Condensed Matter 201

    Towards Autopoietic Computing

    Full text link
    A key challenge in modern computing is to develop systems that address complex, dynamic problems in a scalable and efficient way, because the increasing complexity of software makes designing and maintaining efficient and flexible systems increasingly difficult. Biological systems are thought to possess robust, scalable processing paradigms that can automatically manage complex, dynamic problem spaces, possessing several properties that may be useful in computer systems. The biological properties of self-organisation, self-replication, self-management, and scalability are addressed in an interesting way by autopoiesis, a descriptive theory of the cell founded on the concept of a system's circular organisation to define its boundary with its environment. In this paper, therefore, we review the main concepts of autopoiesis and then discuss how they could be related to fundamental concepts and theories of computation. The paper is conceptual in nature and the emphasis is on the review of other people's work in this area as part of a longer-term strategy to develop a formal theory of autopoietic computing.Comment: 10 Pages, 3 figure

    Effect of spacer material on the magnetic surface anisotropy in ultrathin Fe70B30 multilayer films

    Get PDF
    It has been found recently that the magnetic surface anisotropy Ks in Fe70B30/Ag multilayer films decreases monotonically with magnetic layer thickness (2L) for 2L<16.5 Å. In order to determine possible effects of the spacer material on the surface anisotropy in the aforementioned system, Ag has been replaced with Al2O3 and ferromagnetic resonance (FMR) measurements have been made on these films. These Fe70B30/Al2O3 films were fabricated by magnetron sputtering and were characterized by X-ray-diffraction and vibrating sample magnetometer (VSM) measurements in addition to FMR. In the region where Ks depends upon 2L, the data is insufficient to confirm the thickness dependence of Ks that was observed in Fe70B30/Ag, while in the region where Ks is independent of 2L, the values of Ks deduced for Fe70B30/Ag and Fe70B30/Al2O3 are in good agreement. The latter is particularly interesting in light of the enormous difference in conductivity between Ag and Al2O3
    corecore