1,830 research outputs found
Na(V)1.5 sodium channel window currents contribute to spontaneous firing in olfactory sensory neurons
Olfactory sensory neurons (OSNs) fire spontaneously as well as in response to odor; both forms of firing are physiologically important. We studied voltage-gated Na+ channels in OSNs to assess their role in spontaneous activity. Whole cell patch-clamp recordings from OSNs demonstrated both tetrodotoxin-sensitive and tetrodotoxin-resistant components of Na+ current. RT-PCR showed mRNAs for five of the nine different Na+ channel α-subunits in olfactory tissue; only one was tetrodotoxin resistant, the so-called cardiac subtype NaV1.5. Immunohistochemical analysis indicated that NaV1.5 is present in the apical knob of OSN dendrites but not in the axon. The NaV1.5 channels in OSNs exhibited two important features: 1) a half-inactivation potential near â100 mV, well below the resting potential, and 2) a window current centered near the resting potential. The negative half-inactivation potential renders most NaV1.5 channels in OSNs inactivated at the resting potential, while the window current indicates that the minor fraction of noninactivated NaV1.5 channels have a small probability of opening spontaneously at the resting potential. When the tetrodotoxin-sensitive Na+ channels were blocked by nanomolar tetrodotoxin at the resting potential, spontaneous firing was suppressed as expected. Furthermore, selectively blocking NaV1.5 channels with Zn2+ in the absence of tetrodotoxin also suppressed spontaneous firing, indicating that NaV1.5 channels are required for spontaneous activity despite resting inactivation. We propose that window currents produced by noninactivated NaV1.5 channels are one source of the generator potentials that trigger spontaneous firing, while the upstroke and propagation of action potentials in OSNs are borne by the tetrodotoxin-sensitive Na+ channel subtypes.This work was aided by support from Boston University, the Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD) P30 DC-04657; D. Restrepo, principal investigator], and NIDCD Grants DC-04863 to V. Dionne and DC-006070 to D. Restrepo and T. E. Finger. (Boston University; P30 DC-04657 - Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD)]; DC-04863 - Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD)]; DC-006070 - Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD)])https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122723/Accepted manuscrip
Neuroendocrine Whiplash: Slamming the Breaks on Anabolic-Androgenic Steroids Following Repetitive Mild Traumatic Brain Injury in Rats May Worsen Outcomes
Sport-related concussion is an increasingly common injury among adolescents, with repetitive mild traumatic brain injuries (RmTBI) being a significant risk factor for long-term neurobiological and psychological consequences. It is not uncommon for younger professional athletes to consume anabolic-androgenic steroids (AAS) in an attempt to enhance their performance, subjecting their hormonally sensitive brains to potential impairment during neurodevelopment. Furthermore, RmTBI produces acute neuroendocrine dysfunction, specifically in the anterior pituitary, disrupting the hypothalamic-pituitary adrenal axis, lowering cortisol secretion that is needed to appropriately respond to injury. Some AAS users exhibit worse symptoms post-RmTBI if they quit their steroid regime. We sought to examine the pathophysiological outcomes associated with the abrupt cessation of the commonly abused AAS, Metandienone (Met) on RmTBI outcomes in rats. Prior to injury, adolescent male rats received either Met or placebo, and exercise. Rats were then administered RmTBIs or sham injuries, followed by steroid and exercise cessation (SEC) or continued treatment. A behavioral battery was conducted to measure outcomes consistent with clinical representations of post-concussion syndrome and chronic AAS exposure, followed by analysis of serum hormone levels, and qRT-PCR for mRNA expression and telomere length. RmTBI increased loss of consciousness and anxiety-like behavior, while also impairing balance and short-term working memory. SEC induced hyperactivity while Met treatment alone increased depressive-like behavior. There were cumulative effects whereby RmTBI and SEC exacerbated anxiety and short-term memory outcomes. mRNA expression in the prefrontal cortex, amygdala, hippocampus, and pituitary were modified in response to Met and SEC. Analysis of telomere length revealed the negative impact of SEC while Met and SEC produced changes in serum levels of testosterone and corticosterone. We identified robust changes in mRNA to serotonergic circuitry, neuroinflammation, and an enhanced stress response. Interestingly, Met treatment promoted glucocorticoid secretion after injury, suggesting that maintained AAS may be more beneficial than abstaining after mTBI
The MiMeS Project: Overview and Current Status
The Magnetism in Massive Stars (MiMeS) Project is a consensus collaboration
among many of the foremost international researchers of the physics of hot,
massive stars, with the basic aim of understanding the origin, evolution and
impact of magnetic fields in these objects. At the time of writing, MiMeS Large
Programs have acquired over 950 high-resolution polarised spectra of about 150
individual stars with spectral types from B5-O4, discovering new magnetic
fields in a dozen hot, massive stars. The quality of this spectral and magnetic
mat\'eriel is very high, and the Collaboration is keen to connect with
colleagues capable of exploiting the data in new or unforeseen ways. In this
paper we review the structure of the MiMeS observing programs and report the
status of observations, data modeling and development of related theory.Comment: Proceedings of IAUS272: Active OB star
Lentiviral Vector Delivery of Human Interleukin-7 (hIL-7) to Human Immune System (HIS) Mice Expands T Lymphocyte Populations
Genetically modified mice carrying engrafted human tissues provide useful models to study human cell biology in physiologically relevant contexts. However, there remain several obstacles limiting the compatibility of human cells within their mouse hosts. Among these is inadequate cross-reactvitiy between certain mouse cytokines and human cellular receptors, depriving the graft of important survival and growth signals. To circumvent this problem, we utilized a lentivirus-based delivery system to express physiologically relevant levels of human interleukin-7 (hIL-7) in Rag2-/-Îłc-/- mice following a single intravenous injection. hIL-7 promoted homeostatic proliferation of both adoptively transferred and endogenously generated T-cells in Rag2-/-Îłc-/- Human Immune System (HIS) mice. Interestingly, we found that hIL-7 increased T lymphocyte numbers in the spleens of HIV infected HIS mice without affecting viral load. Taken together, our study unveils a versatile approach to deliver human cytokines to HIS mice, to both improve engraftment and determine the impact of cytokines on human diseases
Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array
We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray
bursts (GRBs) in the data set collected by the Testbed station of the Askaryan
Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no
events that survive our cuts, which is consistent with 0.12 expected background
events. Using NeuCosmA as a numerical GRB reference emission model, we estimate
upper limits on the prompt UHE GRB neutrino fluence and quasi-diffuse flux from
to GeV. This is the first limit on the prompt UHE GRB
neutrino quasi-diffuse flux above GeV.Comment: 14 pages, 8 figures, Published in Astroparticle Physics Journa
Performance of two Askaryan Radio Array stations and first results in the search for ultra-high energy neutrinos
Ultra-high energy neutrinos are interesting messenger particles since, if
detected, they can transmit exclusive information about ultra-high energy
processes in the Universe. These particles, with energies above
, interact very rarely. Therefore, detectors that
instrument several gigatons of matter are needed to discover them. The ARA
detector is currently being constructed at South Pole. It is designed to use
the Askaryan effect, the emission of radio waves from neutrino-induced cascades
in the South Pole ice, to detect neutrino interactions at very high energies.
With antennas distributed among 37 widely-separated stations in the ice, such
interactions can be observed in a volume of several hundred cubic kilometers.
Currently 3 deep ARA stations are deployed in the ice of which two have been
taking data since the beginning of the year 2013. In this publication, the ARA
detector "as-built" and calibrations are described. Furthermore, the data
reduction methods used to distinguish the rare radio signals from overwhelming
backgrounds of thermal and anthropogenic origin are presented. Using data from
only two stations over a short exposure time of 10 months, a neutrino flux
limit of is
calculated for a particle energy of 10^{18}eV, which offers promise for the
full ARA detector.Comment: 21 pages, 34 figures, 1 table, includes supplementary materia
First Constraints on the Ultra-High Energy Neutrino Flux from a Prototype Station of the Askaryan Radio Array
The Askaryan Radio Array (ARA) is an ultra-high energy ( eV) cosmic
neutrino detector in phased construction near the South Pole. ARA searches for
radio Cherenkov emission from particle cascades induced by neutrino
interactions in the ice using radio frequency antennas ( MHz)
deployed at a design depth of 200 m in the Antarctic ice. A prototype ARA
Testbed station was deployed at m depth in the 2010-2011 season and
the first three full ARA stations were deployed in the 2011-2012 and 2012-2013
seasons. We present the first neutrino search with ARA using data taken in 2011
and 2012 with the ARA Testbed and the resulting constraints on the neutrino
flux from eV.Comment: 26 pages, 15 figures. Since first revision, added section on
systematic uncertainties, updated limits and uncertainty band with
improvements to simulation, added appendix describing ray tracing algorithm.
Final revision includes a section on cosmic ray backgrounds. Published in
Astropart. Phys.
The Cosmic Infrared Background Experiment (CIBER): The Narrow-Band Spectrometer
We have developed a near-infrared spectrometer designed to measure the absolute intensity of the solar 854.2 nm Ca II Fraunhofer line, scattered by interplanetary dust, in the zodiacal light (ZL) spectrum. Based on the known equivalent line width in the solar spectrum, this measurement can derive the zodiacal brightness, testing models of the ZL based on morphology that are used to determine the extragalactic background light in absolute photometry measurements. The spectrometer is based on a simple high-resolution tipped filter placed in front of a compact camera with wide-field refractive optics to provide the large optical throughput and high sensitivity required for rocket-borne observations. We discuss the instrument requirements for an accurate measurement of the absolute ZL brightness, the measured laboratory characterization, and the instrument performance in flight
- âŠ