96 research outputs found

    Surfactant protein-D and pulmonary host defense

    Get PDF
    Surfactant protein-D (SP-D) participates in the innate response to inhaled microorganisms and organic antigens, and contributes to immune and inflammatory regulation within the lung. SP-D is synthesized and secreted by alveolar and bronchiolar epithelial cells, but is also expressed by epithelial cells lining various exocrine ducts and the mucosa of the gastrointestinal and genitourinary tracts. SP-D, a collagenous calcium-dependent lectin (or collectin), binds to surface glycoconjugates expressed by a wide variety of microorganisms, and to oligosaccharides associated with the surface of various complex organic antigens. SP-D also specifically interacts with glycoconjugates and other molecules expressed on the surface of macrophages, neutrophils, and lymphocytes. In addition, SP-D binds to specific surfactant-associated lipids and can influence the organization of lipid mixtures containing phosphatidylinositol in vitro. Consistent with these diverse in vitro activities is the observation that SP-D-deficient transgenic mice show abnormal accumulations of surfactant lipids, and respond abnormally to challenge with respiratory viruses and bacterial lipopolysaccharides. The phenotype of macrophages isolated from the lungs of SP-D-deficient mice is altered, and there is circumstantial evidence that abnormal oxidant metabolism and/or increased metalloproteinase expression contributes to the development of emphysema. The expression of SP-D is increased in response to many forms of lung injury, and deficient accumulation of appropriately oligomerized SP-D might contribute to the pathogenesis of a variety of human lung diseases

    Surfactant Protein-A Suppresses Eosinophil-Mediated Killing of Mycoplasma pneumoniae in Allergic Lungs

    Get PDF
    Surfactant protein-A (SP-A) has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp) frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT) and SP-A−/− allergic mice challenged with the model antigen ovalbumin (Ova) that were concurrently infected with Mp (Ova+Mp) to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp) as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO), which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A−/− mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation and damage

    Mesenchymal cell survival in airway and interstitial pulmonary fibrosis

    Get PDF
    Fibrotic reactions in the airways of the lung or the pulmonary interstitium are a common pathologic outcome after exposure to a wide variety of toxic agents, including metals, particles or fibers. The survival of mesenchymal cells (fibroblasts and myofibroblasts) is a key factor in determining whether a fibroproliferative response that occurs after toxic injury to the lung will ultimately resolve or progress to a pathologic state. Several polypeptide growth factors, including members of the platelet-derived growth factor (PDGF) family and the epidermal growth factor (EGF) family, are prosurvival factors that stimulate a replicative and migratory mesenchymal cell phenotype during the early stages of lung fibrogenesis. This replicative phenotype can progress to a matrix synthetic phenotype in the presence of transforming growth factor-β1 (TGF-β1). The resolution of a fibrotic response requires growth arrest and apoptosis of mesenchymal cells, whereas progressive chronic fibrosis has been associated with mesenchymal cell resistance to apoptosis. Mesenchymal cell survival or apoptosis is further influenced by cytokines secreted during Th1 inflammation (e.g., IFN-γ) or Th2 inflammation (e.g., IL-13) that modulate the expression of growth factor activity through the STAT family of transcription factors. Understanding the mechanisms that regulate the survival or death of mesenchymal cells is central to ultimately developing therapeutic strategies for lung fibrosis

    Overexpression of TGF-alpha increases lung tissue hysteresivity in transgenic mice

    No full text
    Increased transforming growth factor (TGF)-alpha has been observed in neonatal chronic lung disease. Lungs of transgenic mice that overexpress TGF-alpha develop enlarged air spaces and pulmonary fibrosis compared with wild-type mice. We hypothesized that these pathological changes may alter the mechanical coupling of viscous and elastic forces within lung parenchyma. Respiratory impedance was measured in open-chested, tracheostomized adult wild-type and TGF-alpha mice by using the forced oscillation technique (0.25-19.63 Hz) delivered by flexiVent (Scireq, Montreal, PQ). Estimates of airway resistance (Raw), inertance (I), and the coefficients of tissue damping (G(L)) and tissue elastance (H-L) were obtained by fitting a model to each impedance spectrum. Hysteresivity (eta) was calculated as G(L)/H-L. There was a significant increase in eta (P < 0.01) and a trend to a decrease in H-L (P = 0.07) of TGF- mice compared with the wild-type group. There was no significant change in Raw, I, or G(L). Structural abnormality present in the lungs of adult TGF-alpha mice alters viscoelastic coupling of the tissues, as evidenced by a change in eta
    • …
    corecore