29,808 research outputs found

    Agricultural aviation user requirement priorities

    Get PDF
    The results are given of a research project pertaining to the development of agricultural aviation user requirement priorities. The raw data utilized in the project was obtained from the National Agricultural Aviation Association. A specially configured poll, developed by the Actuarial Research Corporation was used to solicit responses from NAAA members and others. The primary product of the poll is the specification of seriousness as determined by the respondents for some selected agricultural aviation problem areas identified and defined during the course of an intensive analysis by the Actuarial Research Corporation

    Vibrational properties of phonons in random binary alloys: An augmented space recursive technique in the k-representation

    Full text link
    We present here an augmented space recursive technique in the k-representation which include diagonal, off-diagonal and the environmental disorder explicitly : an analytic, translationally invariant, multiple scattering theory for phonons in random binary alloys.We propose the augmented space recursion (ASR) as a computationally fast and accurate technique which will incorporate configuration fluctuations over a large local environment. We apply the formalism to Ni55Pd45Ni_{55}Pd_{45}, Ni_{88}Cr_12} and Ni50Pt50Ni_{50}Pt_{50} alloys which is not a random choice. Numerical results on spectral functions, coherent structure factors, dispersion curves and disordered induced FWHM's are presented. Finally the results are compared with the recent itinerant coherent potential approximation (ICPA) and also with experiments.Comment: 20 pages, LaTeX, 23 figure

    The development of absorptive capacity-based innovation in a construction SME

    Get PDF
    Traditionally, construction has been a transaction-oriented industry. However, it is changing from the design-bid-build process into a business based on innovation capability and performance management, in which contracts are awarded on the basis of factors such as knowledge, intellectual capital and skills. This change presents a challenge to construction-sector SMEs with scarce resources, which must find ways to innovate based on those attributes to ensure their future competitiveness. This paper explores how dynamic capability, using an absorptive capacity framework in response to these challenges, has been developed in a construction-based SME. The paper also contributes to the literature on absorptive capacity and innovation by showing how the construct can be operationalized within an organization. The company studied formed a Knowledge Transfer Partnership using action research over a two-year period with a local university. The aim was to increase its absorptive capacity and hence its ability to meet the changing market challenges. The findings show that absorptive capacity can be operationalized into a change management approach for improving capability-based competitiveness. Moreover, it is important for absorptive capacity constructs and language to be contextualized within a given organizational setting (as in the case of the construction-based SME in the present study)

    Charged and superconducting vortices in dense quark matter

    Full text link
    Quark matter at astrophysical densities may contain stable vortices due to the spontaneous breaking of hypercharge symmetry by kaon condensation. We argue that these vortices could be both charged and electrically superconducting. Current carrying loops (vortons) could be long lived and play a role in the magnetic and transport properties of this matter. We provide a scenario for vorton formation in protoneutron stars.Comment: Replaced with the published version. A typographical error in Eq. 2 is correcte

    The Delta-Delta Intermediate State in 1S0 Nucleon-Nucleon Scattering From Effective Field Theory

    Full text link
    We examine the role of the Delta-Delta intermediate state in low energy NN scattering using effective field theory. Theories both with and without pions are discussed. They are regulated with dimensional regularization and MSbar subtraction. We find that the leading effects of the Delta-Delta state can be absorbed by a redefinition of the contact terms in a theory with nucleons only. It does not remove the requirement of a higher dimension operator to reproduce data out to moderate momentum. The explicit decoupling of the Delta-Delta state is shown for the theory without pions.Comment: 16 pages, 3 figures, uses harvma

    The Long and Short of Nuclear Effective Field Theory Expansions

    Get PDF
    Nonperturbative effective field theory calculations for NN scattering seem to break down at rather low momenta. By examining several toy models, we clarify how effective field theory expansions can in general be used to properly separate long- and short-range effects. We find that one-pion exchange has a large effect on the scattering phase shift near poles in the amplitude, but otherwise can be treated perturbatively. Analysis of a toy model that reproduces 1S0 NN scattering data rather well suggests that failures of effective field theories for momenta above the pion mass can be due to short-range physics rather than the treatment of pion exchange. We discuss the implications this has for extending the applicability of effective field theories.Comment: 22 pages, 9 figures, references corrected, minor modification

    Eigenstate Structure in Graphs and Disordered Lattices

    Full text link
    We study wave function structure for quantum graphs in the chaotic and disordered regime, using measures such as the wave function intensity distribution and the inverse participation ratio. The result is much less ergodicity than expected from random matrix theory, even though the spectral statistics are in agreement with random matrix predictions. Instead, analytical calculations based on short-time semiclassical behavior correctly describe the eigenstate structure.Comment: 4 pages, including 2 figure

    Wave Function Structure in Two-Body Random Matrix Ensembles

    Full text link
    We study the structure of eigenstates in two-body interaction random matrix ensembles and find significant deviations from random matrix theory expectations. The deviations are most prominent in the tails of the spectral density and indicate localization of the eigenstates in Fock space. Using ideas related to scar theory we derive an analytical formula that relates fluctuations in wave function intensities to fluctuations of the two-body interaction matrix elements. Numerical results for many-body fermion systems agree well with the theoretical predictions.Comment: 4 pages, 2 figure
    • …
    corecore