269 research outputs found

    Solenoid-free Plasma Startup in NSTX using Coaxial Helicity Injection

    Full text link

    Fast neutral pressure gauges in NSTX

    Get PDF
    Successful operation in NSTX of two prototype fast-response micro ionization gauges during plasma operations has motivated us to install five gauges at different toroidal and poloidal locations to measure the edge neutral pressure and its dependence on the type of discharge (L-mode, H-mode, CHI) and the fueling method and location. The edge neutral pressure is also used as an input to the transport analysis codes TRANSP and DEGAS-2. The modified PDX-type Penning gauges are well suited for pressure measurements in the NSTX divertor where the toroidal field is relatively high. Behind the NSTX outer divertor plates where the field is lower, an unshielded fast ion gauge of a new design has been installed. This gauge was developed after laboratory testing of several different designs in a vacuum chamber with applied magnetic fields

    Dust-driven Dynamos in Accretion Disks

    Get PDF
    Magnetically driven astrophysical jets are related to accretion and involve toroidal magnetic field pressure inflating poloidal magnetic field flux surfaces. Examination of particle motion in combined gravitational and magnetic fields shows that these astrophysical jet toroidal and poloidal magnetic fields can be powered by the gravitational energy liberated by accreting dust grains that have become positively charged by emitting photo-electrons. Because a dust grain experiences magnetic forces after becoming charged, but not before, charging can cause irreversible trapping of the grain so dust accretion is a consequence of charging. Furthermore, charging causes canonical angular momentum to replace mechanical angular momentum as the relevant constant of the motion. The resulting effective potential has three distinct classes of accreting particles distinguished by canonical angular momentum, namely (i) "cyclotron-orbit", (ii) "Speiser-orbit", and (iii) "zero canonical angular momentum" particles. Electrons and ions are of class (i) but depending on mass and initial orbit inclination, dust grains can be of any class. Light-weight dust grains develop class (i) orbits such that the grains are confined to nested poloidal flux surfaces, whereas grains with a critical weight such that they experience comparable gravitational and magnetic forces can develop class (ii) or class (iii) orbits, respectively producing poloidal and toroidal field dynamos.Comment: 70 pages, 16 figure
    • …
    corecore