269 research outputs found
Fast neutral pressure gauges in NSTX
Successful operation in NSTX of two prototype fast-response micro ionization gauges during plasma operations has motivated us to install five gauges at different toroidal and poloidal locations to measure the edge neutral pressure and its dependence on the type of discharge (L-mode, H-mode, CHI) and the fueling method and location. The edge neutral pressure is also used as an input to the transport analysis codes TRANSP and DEGAS-2. The modified PDX-type Penning gauges are well suited for pressure measurements in the NSTX divertor where the toroidal field is relatively high. Behind the NSTX outer divertor plates where the field is lower, an unshielded fast ion gauge of a new design has been installed. This gauge was developed after laboratory testing of several different designs in a vacuum chamber with applied magnetic fields
Recommended from our members
Formation and sustainment of a very low aspect ratio tokamak using coaxial helicity injection (the Helicity Injected Torus [HIT] experiment). Progress report No. 2, February 1, 1991--January 31, 1992
In the paper we will detail the progress of the HIT experiment construction, including the following components: preliminary data and interpretation; diagnostic systems; vacuum vessel and pumping system; helicity source and power supplies; toroidal field coil and power supply; data acquisition system; collaboration with general atomics, with a brief summary given on each
Dust-driven Dynamos in Accretion Disks
Magnetically driven astrophysical jets are related to accretion and involve
toroidal magnetic field pressure inflating poloidal magnetic field flux
surfaces. Examination of particle motion in combined gravitational and magnetic
fields shows that these astrophysical jet toroidal and poloidal magnetic fields
can be powered by the gravitational energy liberated by accreting dust grains
that have become positively charged by emitting photo-electrons. Because a dust
grain experiences magnetic forces after becoming charged, but not before,
charging can cause irreversible trapping of the grain so dust accretion is a
consequence of charging. Furthermore, charging causes canonical angular
momentum to replace mechanical angular momentum as the relevant constant of the
motion. The resulting effective potential has three distinct classes of
accreting particles distinguished by canonical angular momentum, namely (i)
"cyclotron-orbit", (ii) "Speiser-orbit", and (iii) "zero canonical angular
momentum" particles. Electrons and ions are of class (i) but depending on mass
and initial orbit inclination, dust grains can be of any class. Light-weight
dust grains develop class (i) orbits such that the grains are confined to
nested poloidal flux surfaces, whereas grains with a critical weight such that
they experience comparable gravitational and magnetic forces can develop class
(ii) or class (iii) orbits, respectively producing poloidal and toroidal field
dynamos.Comment: 70 pages, 16 figure
Recommended from our members
Fast Neutral Pressure Measurements in NSTX
Several fast neutral pressure gauges have been installed on NSTX [National Spherical Torus Experiment] to measure the vessel and divertor pressure during inductive and coaxial helicity injected (CHI) plasma operations. Modified, PDX [Poloidal Divertor Experiment]-type Penning gauges have been installed on the upper and lower divertors. Neutral pressure measurements during plasma operations from these and from two shielded fast Micro ion gauges at different toroidal locations on the vessel mid-plane are described. A new unshielded ion gauge, referred to as the In-vessel Neutral Pressure (INP) gauge is under development
Recommended from our members
Sustained spheromak coaxial gun operation in the presence of an n=1 magnetic distortion
The Sustained Spheromak Physics Experiment (SSPX) uses a magnetized coaxial gun to form and sustain spheromaks by helicity injection. Internal probes give the magnetic profile within the gun. Analysis of these data show that a number of commonly applied assumptions are not completely correct, and some previously unrecognized processes may be at work. Specifically, the fraction of the available vacuum flux spanning the gun that is stretched out of the gun is variable and not usually 100%. The n=1 mode that is present during sustained discharges has its largest value of {delta}B/B within the gun, so that instantaneously B within the gun is not axisymmetric. By applying a rigid-rotor model to account for the mode, the instantaneous field and current structure within the gun are determined. The current density is also highly non-axisymmetric and the local value of {lambda} {triple_bond} {mu}{sub 0}j{sub {parallel}}/B is not constant, although the global value {lambda}{sub g} {triple_bond} {mu}{sub 0}I{sub g}/{psi}{sub g} closely matches that expected by axisymmetric models. The current distribution near the gun muzzle suggests cross-field current exists, and this is explained as a line-tying reaction to plasma rotation
- …