7,209 research outputs found

    Heat Kernel for Spin-3/2 Rarita-Schwinger Field in General Covariant Gauge

    Get PDF
    The heat kernel for the spin-3/2 Rarita-Schwinger gauge field on an arbitrary Ricci flat space-time (d>2d>2) is investigated in a family of covariant gauges with one gauge parameter α\alpha. The α\alpha-dependent term of the kernel is expressed by the spin-1/2 heat kernel. It is shown that the axial anomaly and the one-loop divegence of the action are α\alpha-independent, and that the conformal anomaly has an α\alpha-dependent total derivative term in d=2m≄6d=2m\geq6 dimensions.Comment: 11 pages, latex, ITP-SB-94-3

    Effect of Oscillating Landau Bandwidth on the Integer Quantum Hall Effect in a Unidirectional Lateral Superlattice

    Full text link
    We have measured activation gaps for odd-integer quantum Hall states in a unidirectional lateral superlattice (ULSL) -- a two-dimensional electron gas (2DEG) subjected to a unidirectional periodic modulation of the electrostatic potential. By comparing the activation gaps with those simultaneously measured in the adjacent section of the same 2DEG sample without modulation, we find that the gaps are reduced in the ULSL by an amount corresponding to the width acquired by the Landau levels through the introduction of the modulation. The decrement of the activation gap varies with the magnetic field following the variation of the Landau bandwidth due to the commensurability effect. Notably, the decrement vanishes at the flat band conditions.Comment: 7 pages, 6 figures, minor revisio

    Modulation Induced Phase Transition from Fractional Quantum Hall to Stripe State at nu=5/3

    Full text link
    We have investigated the effect of unidirectional periodic potential modulation on the fractional quantum Hall (FQH) state at filling factors nu=5/3 and 4/3. For large enough modulation amplitude, we find that the resistivity minimum at nu=5/3 gives way to a peak that grows with decreasing temperature. Density matrix renormalization group calculation reveals that phase transition from FQH state to unidirectional striped state having a period sim 4 l (with l the magnetic length) takes place at nu=1/3 (equivalent to nu=5/3 by the particle-hole symmetry) with the increase of the modulation amplitude, suggesting that the observed peak is the manifestation of the stripe phase.Comment: 4 pages, 6 figures; minor revisio

    Phase Variation in the Pulse Profile of SMC X-1

    Full text link
    We present the results of timing and spectral analysis of X-ray high state observations of the high-mass X-ray pulsar SMC X-1 with Chandra, XMM-Newton, and ROSAT, taken between 1991 and 2001. The source has L_X ~ 3-5 x 10^38 ergs/s, and the spectra can be modeled as a power law plus blackbody with kT_BB \~ 0.18 keV and reprocessed emission radius R_BB ~ 2 x 10^8 cm, assuming a distance of 60 kpc to the source. Energy-resolved pulse profiles show several distinct forms, more than half of which include a second pulse in the soft profile, previously documented only in hard energies. We also detect significant variation in the phase shift between hard and soft pulses, as has recently been reported in Her X-1. We suggest an explanation for the observed characteristics of the soft pulses in terms of precession of the accretion disk.Comment: 4 pages, 4 figures, accepted for publication in ApJL; v2 minor corrections, as will appear in ApJ

    Tuning of magnetic quantum criticality in artificial Kondo superlattice CeRhIn5/YbRhIn5

    Get PDF
    The effects of reduced dimensions and the interfaces on antiferromagnetic quantum criticality are studied in epitaxial Kondo superlattices, with alternating nn layers of heavy-fermion antiferromagnet CeRhIn5_5 and 7 layers of normal metal YbRhIn5_5. As nn is reduced, the Kondo coherence temperature is suppressed due to the reduction of effective Kondo screening. The N\'{e}el temperature is gradually suppressed as nn decreases and the quasiparticle mass is strongly enhanced, implying dimensional control toward quantum criticality. Magnetotransport measurements reveal that a quantum critical point is reached for n=3n=3 superlattice by applying small magnetic fields. Remarkably, the anisotropy of the quantum critical field is opposite to the expectations from the magnetic susceptibility in bulk CeRhIn5_5, suggesting that the Rashba spin-orbit interaction arising from the inversion symmetry breaking at the interface plays a key role for tuning the quantum criticality in the two-dimensional Kondo lattice.Comment: Main text: 5 pages, 4 figures; Supplemental material:6 pages, 3 figures. Accepted for publication in Physical Review Letter

    Controllable Rashba spin-orbit interaction in artificially engineered superlattices involving the heavy-fermion superconductor CeCoIn5

    Get PDF
    By using a molecular beam epitaxy technique, we fabricate a new type of superconducting superlattices with controlled atomic layer thicknesses of alternating blocks between heavy fermion superconductor CeCoIn_5, which exhibits a strong Pauli pair-breaking effect, and nonmagnetic metal YbCoIn_5. The introduction of the thickness modulation of YbCoIn_5 block layers breaks the inversion symmetry centered at the superconducting block of CeCoIn_5. This configuration leads to dramatic changes in the temperature and angular dependence of the upper critical field, which can be understood by considering the effect of the Rashba spin-orbit interaction arising from the inversion symmetry breaking and the associated weakening of the Pauli pair-breaking effect. Since the degree of thickness modulation is a design feature of this type of superlattices, the Rashba interaction and the nature of pair-breaking are largely tunable in these modulated superlattices with strong spin-orbit coupling.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    Reduced frequency noise in superconducting resonators

    Get PDF
    We report a reduction of the frequency noise in coplanar waveguide superconducting resonators. The reduction of 7 dB is achieved by removing the exposed dielectric substrate surface from the region with high electric fields and by using NbTiN. In a model-analysis the surface of NbTiN is found to be a negligible source of noise, experimentally supported by a comparison with NbTiN on SiOx resonators. The reduction is additive to decreasing the noise by widening the resonators.Comment: 4 pages, 4 figure
    • 

    corecore