25 research outputs found

    Analysis of stamping process using flexible punch

    No full text
    Temperatura kształtowania należy do podstawowych parametrów obróbki plastycznej blach na ciepło. Podwyższona temperatura powoduje zmniejszenie oporu plastycznego wpływając na otrzymanie odpowiedniej podatności materiału do kształtowania. W badaniach, których wyniki przedstawiono w artykule, podjęto próbę modyfikacji procesu kształtowania osłony łożyska turbowentylatorowego, która jest wykonana z trudnoodkształcalnej stali nierdzewnej AMS5604. Materiał ten charakteryzuje się małym zapasem plastyczności, w związku z tym konieczne jest zastosowanie niekonwencjonalnego dwuetapowego procesu kształtowania: kształtowanie zarysu osłony na zimno stemplem elastycznym oraz późniejsza kalibracja kształtu w podwyższonej temperaturze za pomocą stempla metalowego. Przedstawiono również wyniki analizy metalograficznej oraz składu chemicznego blachy po kształtowaniu.Forming temperature is one of the basic parameters of warm sheet metal forming. The elevated temperature reduces the deformation resistance and affects the susceptibility of the material to forming. In the investigations which results are presented in the article, an attempt was made to modify the forming process the bearing housing of fan engine. The housing is made of hardly-deformable stainless steel AMS5604. This material has low formability margin, and therefore, it is necessary to use non-conventional two-stage forming process: forming of preliminary shape in rubber-pad forming process and calibration of final shape at elevated temperature using a metallic dies. The paper presents also the results of metallographic analysis and chemical composition of the sheet after forming

    Forming Limit Diagram of the AMS 5599 Sheet Metal

    No full text
    Formability of sheet metal is dependent on the mechanical properties. Some materials form better than others - moreover, a material that has the best formability for one stamping may behave very poorly in a stamping of another configuration. For these reasons, extensive test programs are often carried out in an attempt to correlate material formability with value of some mechanical properties. The formability of sheet metal has frequently been expressed by the value of strain hardening exponent and plastic anisotropy ratio. The stress-strain and hardening behaviour of a material is very important in determining its resistance to plastic instability. However experimental studies of formability of various materials have revealed basic differences in behaviour, such as the ”brass-type” and the ”steel-type”, exhibiting respectively, zero and positive dependence of forming limit on the strain ratio. In this study mechanical properties and the Forming Limit Diagram of the AMS 5599 sheet metal were determined using uniaxial tensile test and Marciniak’s flat bottomed punch test respectively. Different methods were used for the FLD calculation - results of these calculations were compared with experimental results.Zdolność do przyjmowania odkształceń plastycznych podczas kształtowania blach zależy od ich właściwości mechanicznych Odkształcalność blach zależy od rodzaju materiału - a ponadto, materiał który wykazuje dobrą odkształcalność podczas kształtowania wytłoczki o określonej geometrii, może sprawiać trudności podczas kształtowania wytłoczki o innej konfiguracji. Z tego powodu prowadzone są liczne prace badawcze mające na celu określenie relacji pomiędzy odkształcalnością blach a wartością parametrów mechanicznych materiału. Przy ocenie odkształcalności blach najczęściej korzysta się z wyznaczania wartości wykładnika krzywej umocnienia odkształceniowego oraz współczynnika anizotropii właściwości plastycznych. Znajomość charakterystyk odkształcenie-naprężenie oraz wskaźników umocnienia odkształceniowego jest bardzo ważna przy określaniu odporności na lokalizację odkształcenia. Badania eksperymentalne blach z różnych materiałów wykazały zasadnicze różnice ich odkształcalności. określane jako "typu mosiądz” oraz "typu stal”, przejawiające się brakiem lub wyraźną zależnością poziomu odkształceń granicznych od stanu odkształcenia. W pracy zawarte są wyniki badania właściwości mechanicznych w próbie jednoosiowego rozciągania oraz KOG w teście wg Marciniaka z płaskim stemplem, dla blachy ze stopu AMS 5599. Przeprowadzono obliczenia przebiegu krzywej odkształcalności granicznej przy pomocy różnych metod - wyniki obliczeń porównano z wynikami eksperymentu

    Krzywa odkształcalności granicznej blachy ze stopu AMS 5599

    No full text
    Formability of sheet metal is dependent on the mechanical properties. Some materials form better than others - moreover, a material that has the best formability for one stamping may behave very poorly in a stamping of another configuration. For these reasons, extensive test programs are often carried out in an attempt to correlate material formability with value of some mechanical properties. The formability of sheet metal has frequently been expressed by the value of strain hardening exponent and plastic anisotropy ratio. The stress-strain and hardening behaviour of a material is very important in determining its resistance to plastic instability. However experimental studies of formability of various materials have revealed basic differences in behaviour, such as the ”brass-type” and the ”steel-type”, exhibiting respectively, zero and positive dependence of forming limit on the strain ratio. In this study mechanical properties and the Forming Limit Diagram of the AMS 5599 sheet metal were determined using uniaxial tensile test and Marciniak’s flat bottomed punch test respectively. Different methods were used for the FLD calculation - results of these calculations were compared with experimental results.Zdolność do przyjmowania odkształceń plastycznych podczas kształtowania blach zależy od ich właściwości mechanicznych Odkształcalność blach zależy od rodzaju materiału - a ponadto, materiał który wykazuje dobrą odkształcalność podczas kształtowania wytłoczki o określonej geometrii, może sprawiać trudności podczas kształtowania wytłoczki o innej konfiguracji. Z tego powodu prowadzone są liczne prace badawcze mające na celu określenie relacji pomiędzy odkształcalnością blach a wartością parametrów mechanicznych materiału. Przy ocenie odkształcalności blach najczęściej korzysta się z wyznaczania wartości wykładnika krzywej umocnienia odkształceniowego oraz współczynnika anizotropii właściwości plastycznych. Znajomość charakterystyk odkształcenie-naprężenie oraz wskaźników umocnienia odkształceniowego jest bardzo ważna przy określaniu odporności na lokalizację odkształcenia. Badania eksperymentalne blach z różnych materiałów wykazały zasadnicze różnice ich odkształcalności. określane jako "typu mosiądz” oraz "typu stal”, przejawiające się brakiem lub wyraźną zależnością poziomu odkształceń granicznych od stanu odkształcenia. W pracy zawarte są wyniki badania właściwości mechanicznych w próbie jednoosiowego rozciągania oraz KOG w teście wg Marciniaka z płaskim stemplem, dla blachy ze stopu AMS 5599. Przeprowadzono obliczenia przebiegu krzywej odkształcalności granicznej przy pomocy różnych metod - wyniki obliczeń porównano z wynikami eksperymentu

    The investigation of springback phenomenon of AMS5504 stainless steel sheet at elevated temperature

    No full text
    Sprężynowanie powrotne blachy stalowej nierdzewnej AMS5604 o grubości 1 mm określono w próbie swobodnego gięcia blachy za pomocą walcowego stempla. Badania eksperymentalne gięcia zrealizowano na specjalnym przyrządzie umożliwiającym pomiar wartości sprężynowania blachy. Symulacje numeryczne za pomocą metody elementów skończonych procesu gięcia blachy przeprowadzono za pomocą programu LS-Dyna. Symulacje numeryczne zostały wykonane dla procesu gięcia odbywającego się w temperaturze otoczenia oraz w temperaturach podwyższonych: 400°C, 500°C, 600°C, 650°C i 700°C. Otrzymane wyniki wskazują, że współczynnik sprężynowania blachy zmniejsza się liniowo wraz ze wzrostem temperatury. Ponadto, podczas procesu gięcia w badanym zakresie temperatury dochodzi do zmiany grubości blachy. Temperatura obróbki blachy jest czynnikiem decydującym o wartości granicznej odkształcalności blachy i determinuje końcowy kształt wyrobu.To determine the value of springback coefficient of sheet metal the cylindrical bending test was conducted. The experimental tests of bending process were carried out using special device which allows to measure the value of sheet springback. As a test material we used the AMS 5604 alloy sheet metal with a sheet thickness of 1 mm. The numerical simulations by finite element method of the cylindrical bending test was conducted using LS-Dyna program. The simulations were conducted at the room temperature (20°C) and at elevated temperatures: 400°C, 500°C, 600°C, 650°C i 700°C. The results indicated that the value of springback coefficient of the sheet decreases with the increasing of temperature. Furthermore, during the bending process at analysed temperature the linear variation in sheet thickness is observed. The forming temperature value influences the value of limit strains of the sheet and determines the final shape of product

    Modelowanie numeryczne procesów kształtowania blach przy użyciu modułu Electromagnetism (EM) w programie LS-DYNA

    No full text
    Electromagnetic pulse technology (EMPT) is a touchless method used for forming, blanking and joining of materials conducted electric current. Electromagnetic pulse interaction is also a method of plastic forming of materials with high velocity strains. In this paper the theoretical principles and physical phenomena occurred during electromagnetic pulse sheet forming are discussed. Furthermore, an example of the numerical modelling of electromagnetic forming in the Electromagnetism (EM) module of LS-Dyna® solver.Technologia impulsu elektromagnetycznego (TIEM) jest metodą bezdotykową służącą do zmiany kształtu, cięcia oraz łączenia materiałów przewodzących prąd elektryczny. Oddziaływanie impulsem elektromagnetycznym jest również jedną z metod plastycznego kształtowania materiałów dużymi prędkościami odkształcenia. W artykule omówiono podstawy teoretyczne oraz przedstawiono zjawiska fizyczne zachodzące podczas kształtowania blach impulsem elektromagnetycznym. Przedstawiono również przykład modelowania numerycznego procesu TIEM przy użyciu modułu Electromagnetism (EM) programu LS-Dyna®

    Zastosowanie systemów CAE w projektowaniu procesów tłoczenia z użyciem odkształcalnych narzędzi

    No full text
    This article shows example result of computer simulations supporting production process of bearing housing of aircraft engine. Verification of both deep drawing process project and tools design were carried out using finite element models implemented in eta/Dynaform 5.8.1 system and LS-DYNA solver. Wrinkling and fracture of the material were the main phenomena subjected to the investigation on the way of numerical analysis. A number of computer simulations were carried out in aim to analyze the deformation and strain distribution in the final product, as well as to eliminate the mentioned defects. In addition the comparison of results of both industrial tests and computer simulation was done.W artykule przedstawiono przykładowe wyniki symulacji komputerowych wspomagających proces produkcyjny elementu silnika lotniczego z wykorzystaniem narzędzi elastycznych. Projekt narzędzi oraz ich weryfikacje do procesu tłocznia przeprowadzono z wykorzystaniem systemu eta/Dynaform 5.8.1 i jego solvera LS-DYNA. Pofałdowanie i zrywanie materiału wytłoczki to typowe trudności jakie napotkano w trakcie analiz numerycznych. Przeprowadzono szereg symulacji komputerowych mających na celu wyeliminowanie pojawiających się typowych dla procesu tłoczenia wad. W ramach prac przeprowadzono także próby przemysłowe. Wykorzystując nowoczesne techniki pomiarów, wyniki ze wstępnych prób przemysłowych, porównano z wynikami symulacji komputerowych

    The Precipitation Processes and Mechanical Properties of Aged Inconel 718 Alloy After Annealing

    No full text
    Inconel 718 is a precipitation hardenable nickel-iron based superalloy. It has exceptionally high strength and ductility compared to other metallic materials. This is due to intense precipitation of the γ’ and γ” strengthening phases in the temperature range 650-850°C. The main purpose of the authors was to analyze the aging process in Inconel 718 obtained in accordance with AMS 5596, and its effect on the mechanical properties. Tensile and hardness tests were used to evaluate the mechanical properties, in the initial aging process and after reheating, as a function of temperature and time respectively in the ranges 650°-900°C and 5-480 min. In addition, to link the mechanical properties with the microstructure transmission microscopy observations were carried out in selected specimens. As a result, factors influencing the microstructure changes at various stages of strengthening were observed. The authors found that the γ’’ phase nucleates mostly homogenously in the temperature range 650-750°C, causing the greatest increase in strength. On the other hand, the γ’ and δ phases are formed heterogeneously at 850°C or after longer annealing in 800°C, which may weaken the material

    The Precipitation Processes and Mechanical Properties of Aged Inconel 718 Alloy after Annealing

    No full text
    Inconel 718 is a precipitation hardenable nickel-iron based superalloy. It has exceptionally high strength and ductility compared to other metallic materials. This is due to intense precipitation of the γ’ and γ” strengthening phases in the temperature range 650-850°C. The main purpose of the authors was to analyze the aging process in Inconel 718 obtained in accordance with AMS 5596, and its effect on the mechanical properties. Tensile and hardness tests were used to evaluate the mechanical properties, in the initial aging process and after reheating, as a function of temperature and time respectively in the ranges 650°-900°C and 5-480 min. In addition, to link the mechanical properties with the microstructure transmission microscopy observations were carried out in selected specimens. As a result, factors influencing the microstructure changes at various stages of strengthening were observed. The authors found that the γ’’ phase nucleates mostly homogenously in the temperature range 650-750°C, causing the greatest increase in strength. On the other hand, the γ’ and δ phases are formed heterogeneously at 850°C or after longer annealing in 800°C, which may weaken the material

    Identyfikacja właściwości mechanicznych oraz mikrostruktury superstopów niklu przetwarzanych w procesie kształtowania obrotowego

    No full text
    The paper presents the research results of the mechanical properties and microstructure of the material in initial state and parts made from nickel superalloy Inconel®718 in the rotary forming process with laser heating. In the first step was carried out basic research of chemical composition, mechanical properties, hardness and microstructure of sheet in initial state. Then from the metal sheet, in industrial conditions, was made axisymmetric parts in the flow and shear forming with laser heating. Parts were subjected to detailed studies focused on the analysis of changes in the mechanical properties and microstructure in the relation to the material in initial state. The analysis was based on the tests results of strength and plastic properties, hardness, microstructural observations and X-ray microanalysis in the areas where defects appear and beyond. The results are presented in the form of tables, charts, and photographs of the microstructure.W publikacji przedstawiono wyniki badań właściwości mechanicznych oraz mikrostruktury materiału wsadowego i wyrobów wykonanych z superstopu niklu Inconel®718 w procesie kształtowania obrotowego z nagrzewaniem laserowym. W pierwszym etapie zrealizowano podstawowe badania składu chemicznego, właściwości mechanicznych, twardości oraz mikrostruktury blachy wsadowej. Następnie z blachy, w warunkach przemysłowych, wykonano wyroby osiowosymetryczne w procesie kształtowania obrotowego metodą flow i shear formingu z nagrzewaniem laserowym. Wyroby poddano szczegółowym badaniom ukierunkowanym na analizę zmian właściwości mechanicznych oraz mikrostruktury w stosunku do materiału wsadowego. Podstawą analizy były wyniki z testów właściwości wytrzymałościowych i plastycznych, twardości oraz obserwacji mikrostrukturalnych i mikroanalizy rentgenowskiej w obszarach zarówno z wadami, jak i poza nimi. Wyniki przedstawiono w postaci tablic, wykresów oraz fotografii mikrostruktury

    Investigation of the Mechanical Properties and Microstructure of Nickel Superalloys Processed in Shear Forming / Identyfikacja Właściwości Mechanicznych Oraz Mikrostruktury Superstopów Niklu Przetwarzanych W Procesie Kształtowania Obrotowego

    No full text
    The paper presents the research results of the mechanical properties and microstructure of the material in initial state and parts made from nickel superalloy Inconel®718 in the rotary forming process with laser heating. In the first step was carried out basic research of chemical composition, mechanical properties, hardness and microstructure of sheet in initial state. Then from the metal sheet, in industrial conditions, was made axisymmetric parts in the flow and shear forming with laser heating. Parts were subjected to detailed studies focused on the analysis of changes in the mechanical properties and microstructure in the relation to the material in initial state. The analysis was based on the tests results of strength and plastic properties, hardness, microstructural observations and X-ray microanalysis in the areas where defects appear and beyond. The results are presented in the form of tables, charts, and photographs of the microstructure.W publikacji przedstawiono wyniki badań właściwości mechanicznych oraz mikrostruktury materiału wsadowego i wyrobów wykonanych z superstopu niklu Inconel®718 w procesie kształtowania obrotowego z nagrzewaniem laserowym. W pierwszym etapie zrealizowano podstawowe badania składu chemicznego, właściwości mechanicznych, twardości oraz mikrostruktury blachy wsadowej. Następnie z blachy, w warunkach przemysłowych, wykonano wyroby osiowosymetryczne w procesie kształtowania obrotowego metodą flow i shear formingu z nagrzewaniem laserowym. Wyroby poddano szczegółowym badaniom ukierunkowanym na analizę zmian właściwości mechanicznych oraz mikrostruktury w stosunku do materiału wsadowego. Podstawą analizy były wyniki z testów właściwości wytrzymałościowych i plastycznych, twardości oraz obserwacji mikrostrukturalnych i mikroanalizy rentgenowskiej w obszarach zarówno z wadami, jak i poza nimi. Wyniki przedstawiono w postaci tablic, wykresów oraz fotografii mikrostruktury
    corecore