6 research outputs found
The generalized second law of thermodynamics of the universe bounded by the event horizon and modified gravity theories
In this paper, we investigate the validity of the generalized second law of
thermodynamics of the universe bounded by the event horizon. Here we consider
homogeneous and isotropic model of the universe filled with perfect fluid in
one case and in another case holographic model of the universe has been
considered. In the third case the matter in the universe is taken in the form
of non-interacting two fluid system as holographic dark energy and dust. Here
we study the above cases in the Modified gravity, f(R) gravity.Comment: 9 page
Anisotropic Dark Energy and the Generalized Second Law of Thermodynamics
We consider a Bianchi type model in which anisotropic dark energy is
interacting with dark matter and anisotropic radiation. With this scenario, we
investigate the validity of the generalized second law of thermodynamics. It is
concluded that the validity of this law depends on different parameters like
shear, skewness and equation of state.Comment: 12 pages, accepted for publication in Phys. Scr. arXiv admin note:
text overlap with arXiv:1008.0692 and arXiv:1106.241
Scalar-Tensor Theory of Gravity and Generalized Second Law of Thermodynamics on the Event Horizon
In blackhole physics, the second law of thermodynamics is generally valid
whether the blackhole is a static or a non-static one. Considering the universe
as a thermodynamical system the second law of blackhole dynamics extends to the
non-negativity of the sum of the entropy of the matter and the horizon, known
as generalized second law of thermodynamics(GSLT). Here, we have assumed the
universe to be bounded by the event-horizon or filled with perfect fluid and
holographic dark energy in two cases. Thus considering entropy to be an
arbitrary function of the area of the event-horizon, we have tried to find the
conditions and the restrictions over the scalar field and equation of state for
the validity of the GSLT and both in quintessence-era and in phantom-era in
scalar tensor theory.Comment: 8 page
Generalized Second Law of Thermodynamics on the Event Horizon for Interacting Dark Energy
Here we are trying to find the conditions for the validity of the generalized
second law of thermodynamics (GSLT) assuming the first law of thermodynamics on
the event horizon in both cases when the FRW universe is filled with
interacting two fluid system- one in the form of cold dark matter and the other
is either holographic dark energy or new age graphic dark energy. Using the
recent observational data we have found that GSLT holds both in quintessence
era as well as in phantom era for new age graphic model while for holographic
dark energy GSLT is valid only in phantom era.Comment: 8 pages, 2 figure
Transient Crossing of Phantom divide line under Gauss-Bonnet interaction
Smooth double crossing of the phantom barrier has been
found possible in cosmological model with Gauss-Bonnet-scalar interaction, in
the presence of background cold dark matter. Such crossing has been observed to
be a sufficiently late time phenomena and independent of the sign of
Gauss-Bonnet-scalar interaction. The luminosity distance versus redshift curve
shows a perfect fit with the model up to .Comment: 9 pages, 9 figure