649 research outputs found

    The Role of Millimeter VLBI Observations in AGN Research

    Get PDF
    VLBI at millimeter wavelengths (mm-VLBI) allows the detailed imaging of compact galactic and extragalactic radio sources with micro-arcsecond scale resolution, unaccessible by other observing techniques. Here we discuss the scientific potential of mm-VLBI for present and future research on `Active Galactic Nuclei' (AGN) and their powerful relativistic jets. With the new generation of large radio telescopes and interferometer arrays operating in the millimeter radio bands (e.g. ALMA), the ultimate vicinity of super massive Black Holes, and eventually even their event horizon, could be imaged. With its large collecting area, and in combination with these future telescopes, the Sardinia Radio Telescope could form the World's `sharpest' astronomical imaging machine.Comment: 10 pages, 1 table, 7 figures. An inveited talk held at the Sardinia Radiotelescope Conference in Cagliari, Sardinia, on November 7-10, 200

    Dual frequency VSOP imaging of the jet in S5 0836+710

    Full text link
    The luminous high-redshift (z=2.17) quasar S50836+710 has been observed in October 1997 with the VSOP at 1.6 GHz and 5 GHz. We report here a previously unpublished image made from the data at 1.6 GHz and compare the structure of a relativistic jet in this quasazr at the two frequencies. We present a spectral index image tracing spectral properties of the jet up to ~40 milliarcsecond distance from the nucleus. The curved jet ridge line observed in the images and the spectral index distribution can be described by Kelvin-Helmholtz instability developing in a relativistic outflow with a Mach number of ~6. In this description, the overall ridge line of the jet is formed by the helical surface mode of Kelvin-Helmholtz instability, while areas of flatter spectral index embedded into the flow correspond to pressure enhancements produced by the elliptical surface mode of the instability. An alternative explanation involving a sequence of slowly dissipating shocks cannot be ruled out at this point.Comment: 7 pages, 4 figures, pasj00.cls. Submitted to PASJ. (Corrected figure orientation

    Measuring the Black Hole Spin in Sgr A*

    Get PDF
    The polarized mm/sub-mm radiation from Sgr A* is apparently produced by a Keplerian structure whose peak emission occurs within several Schwarzschild radii (r_S=2GM/c^2) of the black hole. The Chandra X-ray counterpart, if confirmed, is presumably the self-Comptonized component from this region. In this paper, we suggest that sub-mm timing observations could yield a signal corresponding to the period P_0 of the marginally stable orbit, and therefore point directly to the black hole's spin a. Sgr A*'s mass is now known to be (2.6\pm 0.2)\times 10^6 M_\odot (an unusually accurate value for supermassive black hole candidates), for which 2.7 min<P_0<36 min, depending on the value of a and whether the Keplerian flow is prograde or retrograde. A Schwarzschild black hole (a=0) should have P_0 ~ 20 min. The identification of the orbital frequency with the innermost stable circular orbit is made feasible by the transition from optically thick to thin emission at sub-mm wavelengths. With stratification in the emitter, the peak of the sub-mm bump in Sgr A*'s spectrum is thus produced at the smallest radius. We caution, however, that theoretical uncertainties in the structure of the emission region may still produce some ambiguity in the timing signal. Given that Sgr A*'s flux at ν1\nu\sim 1 mm is several Jy, these periods should lie within the temporal-resolving capability of sub-mm telescopes using bolometric detectors. A determination of P_0 should provide not only a value of a, but it should also define the angular momentum vector of the orbiting gas in relation to the black hole's spin axis. In addition, since the X-ray flux detected by Chandra appears to be the self-Comptonized mm to sub-mm component, these temporal fluctuations may also be evident in the X-ray signal.Comment: 15 pages, 1 figures. Accepted for publication in ApJ Letter

    High-frequency VLBI observations of SgrA* during a multi-frequency campaign in May 2007

    Full text link
    In May 2007 the compact radio source Sgr A* was observed in a global multi-frequency monitoring campaign, from radio to X-ray bands. Here we present and discuss first and preliminary results from polarization sensitive VLBA observations, which took place during May 14-25, 2007. Here, Sgr A* was observed in dual polarization on 10 consecutive days at 22, 43, and 86 GHz. We describe the VLBI experiments, our data analysis, monitoring program and show preliminary images obtained at the various frequencies. We discuss the data with special regard also to the short term variability.Comment: 6 pages, 5 figures;necessary style files included; contribution for the conference "The Universe under the Microscope" (AHAR 2008), held in Bad Honnef (Germany) in April 2008, to be published in Journal of Physics: Conference Series by Institute of Physics Publishing, R. Schoedel, A. Eckart, S. Pfalzner, and E. Ros (eds.
    corecore