1,250 research outputs found

    Softening of Magnetic Excitations Leading to Pressure-Induced Quantum Phase Transition in Gapped Spin System KCuCl3_3

    Full text link
    KCuCl3_3 is a three dimensionally coupled spin dimer system, which undergoes a pressure-induced quantum phase transition from a gapped ground state to an antiferromagnetic state at a critical pressure of Pc≃8.2P_{\rm c} \simeq 8.2 kbar. Magnetic excitations in KCuCl3_3 at a hydrostatic pressure of 4.7 kbar have been investigated by conducting neutron inelastic scattering experiments using a newly designed cylindrical high-pressure clamp cell. A well-defined single excitation mode is observed. The softening of the excitation mode due to the applied pressure is clearly observed. From the analysis of the dispersion relations, it is found that an intradimer interaction decreases under hydrostatic pressure, while most interdimer interactions increase.Comment: 4 pages, 5 figures, 1 table, jpsj2.cls, to be published in J. Phys. Soc. Jpn. Vol.76 (2007), the graphic problem of Fig.2 was fixe

    Infrared spectroscopy under multi-extreme conditions: Direct observation of pseudo gap formation and collapse in CeSb

    Full text link
    Infrared reflectivity measurements of CeSb under multi-extreme conditions (low temperatures, high pressures and high magnetic fields) were performed. A pseudo gap structure, which originates from the magnetic band folding effect, responsible for the large enhancement in the electrical resistivity in the single-layered antiferromagnetic structure (AF-1 phase) was found at a pressure of 4 GPa and at temperatures of 35 - 50 K. The optical spectrum of the pseudo gap changes to that of a metallic structure with increasing magnetic field strength and increasing temperature. This change is the result of the magnetic phase transition from the AF-1 phase to other phases as a function of the magnetic field strength and temperature. This result is the first optical observation of the formation and collapse of a pseudo gap under multi-extreme conditions.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev.
    • …
    corecore