258 research outputs found

    Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration

    Full text link
    The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with unprecedentedly high angular resolution (consistent with its 1" pixel size). XRT has nine X-ray analysis filters with different temperature responses. One of the most significant scientific features of this telescope is its capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK, which has never been accomplished before. To make full use of this capability, accurate calibration of the coronal temperature response of XRT is indispensable and is presented in this article. The effect of on-orbit contamination is also taken into account in the calibration. On the basis of our calibration results, we review the coronal-temperature-diagnostic capability of XRT

    Evidence for a singularity in ideal magnetohydrodynamics: implications for fast reconnection

    Full text link
    Numerical evidence for a finite-time singularity in ideal 3D magnetohydrodynamics (MHD) is presented. The simulations start from two interlocking magnetic flux rings with no initial velocity. The magnetic curvature force causes the flux rings to shrink until they come into contact. This produces a current sheet between them. In the ideal compressible calculations, the evidence for a singularity in a finite time tct_c is that the peak current density behaves like J1/(tct)|J|_\infty \sim 1/(t_c-t) for a range of sound speeds (or plasma betas). For the incompressible calculations consistency with the compressible calculations is noted and evidence is presented that there is convergence to a self-similar state. In the resistive reconnection calculations the magnetic helicity is nearly conserved and energy is dissipated.Comment: 4 pages, 4 figure

    Monitoring of circulating tumour-associated DNA as a prognostic tool for oral squamous cell carcinoma

    Get PDF
    Frequent allelic imbalances (AIs) including loss of heterozygosity and microsatellite instability on a specific chromosomal region have been identified in a variety of human malignancies. The objective of our study was to assess the possibility of prognostication and monitoring of oral squamous cell carcinoma (SCC) by microsatellite blood assay. DNA from normal and tumorous tissues and serum DNA obtained at three time points (preoperatively, postoperatively, and 4 weeks postoperatively) from 64 patients with oral SCC was examined at nine microsatellite loci. In all, 38 (59%) DNA samples from tumorous tissues and 52% from serum showed AIs in at least one locus. Patterns of AIs in the serum DNA were matched to those detected in tumour DNA. Of them, AIs were frequently detected preoperatively (44%, 28 of 64), and postoperatively (20%, 13 of 64). Moreover, among 12 cases with AIs during the postoperative period, six had no evidence of an AI 4 weeks postoperatively, and they had no recurrence and were disease free. In contrast, six patients with AI-positive DNA 4 weeks postoperatively have died with distant metastasis within 44 weeks. Thus, our results suggest that the assessment of microsatellite status in the serum DNA could be a useful predictive tool to monitor disease prognosis

    Immunohistochemical analysis of Bcl-2 protein in early squamous cell carcinoma of the bronchus treated with photodynamic therapy

    Get PDF
    Photodynamic therapy (PDT) in early squamous cell carcinoma of the bronchus has been shown to result in complete response (CR) and cure. However, local recurrence after PDT develops frequently even after complete remission. Because the effect of PDT had been reported to depend on apoptosis, and apoptosis is inhibited by bcl-2 protein, the relationship between the expression of bcl-2 protein and local recurrence after PDT was examined immunohistochemically. From 1983 to 1997, 50 patients with 59 early squamous cell carcinoma of the bronchus received PDT, and a CR was obtained in 43 lesions (72.8%). As there was no recurrence among tumours that were disease-free for more than 2 years, in this study the tumours were defined as cured when recurrence did not occur 2 years subsequent to the receiving of PDT. Of these CR lesions, 31 carcinomas (53.4%) resulted in a cure. Bcl-2 immunoreactivity was detected in 23 tumours (46.9%) and p53 immunoreactivity was detected in 22 tumours (44.9%). When all tumours were divided into either a large tumour with a longitudinal tumour length of 10 mm or more, or a small tumour with a length of less than 10 mm, the large tumour expressed more bcl-2 protein than the small tumour (P = 0.0155). The degree of bcl-2 expression was significantly related with tumour size (P = 0.0155). The expression of bcl-2 and p53 protein was not associated with the cure rate due to PDT. Tumour length and T status in TNM staging were significantly related to the cure by univariate analysis. T status was the only predictor of the cure according to mutivariate analysis. Of 42 CR lesions, the expression of neither bcl-2 nor p53 protein was associated with local recurrence; only T status was significantly associated (P = 0.008). The relationship between the expression of oncoprotein and local recurrence after PDT was not documented in this study. The success of PDT may depend on the exact assessment of tumour size under optimized PDT illumination. © 2000 Cancer Research Campaig

    miR-34a Repression in Proneural Malignant Gliomas Upregulates Expression of Its Target PDGFRA and Promotes Tumorigenesis

    Get PDF
    Glioblastoma (GBM) and other malignant gliomas are aggressive primary neoplasms of the brain that exhibit notable refractivity to standard treatment regimens. Recent large-scale molecular profiling has revealed distinct disease subclasses within malignant gliomas whose defining genomic features highlight dysregulated molecular networks as potential targets for therapeutic development. The “proneural” designation represents the largest and most heterogeneous of these subclasses, and includes both a large fraction of GBMs along with most of their lower-grade astrocytic and oligodendroglial counterparts. The pathogenesis of proneural gliomas has been repeatedly associated with dysregulated PDGF signaling. Nevertheless, genomic amplification or activating mutations involving the PDGF receptor (PDGFRA) characterize only a subset of proneural GBMs, while the mechanisms driving dysregulated PDGF signaling and downstream oncogenic networks in remaining tumors are unclear. MicroRNAs (miRNAs) are a class of small, noncoding RNAs that regulate gene expression by binding loosely complimentary sequences in target mRNAs. The role of miRNA biology in numerous cancer variants is well established. In an analysis of miRNA involvement in the phenotypic expression and regulation of oncogenic PDGF signaling, we found that miR-34a is downregulated by PDGF pathway activation in vitro. Similarly, analysis of data from the Cancer Genome Atlas (TCGA) revealed that miR-34a expression is significantly lower in proneural gliomas compared to other tumor subtypes. Using primary GBM cells maintained under neurosphere conditions, we then demonstrated that miR-34a specifically affects growth of proneural glioma cells in vitro and in vivo. Further bioinformatic analysis identified PDGFRA as a direct target of miR-34a and this interaction was experimentally validated. Finally, we found that PDGF-driven miR-34a repression is unlikely to operate solely through a p53-dependent mechanism. Taken together, our data support the existence of reciprocal negative feedback regulation involving miR-34 and PDGFRA expression in proneural gliomas and, as such, identify a subtype specific therapeutic potential for miR-34a
    corecore