459 research outputs found

    A Quadratic Spinor Lagrangian for General Relativity

    Get PDF
    We present a new finite action for Einstein gravity in which the Lagrangian is quadratic in the covariant derivative of a spinor field. Via a new spinor-curvature identity, it is related to the standard Einstein-Hilbert Lagrangian by a total differential term. The corresponding Hamiltonian, like the one associated with the Witten positive energy proof is fully four-covariant. It defines quasi-local energy-momentum and can be reduced to the one in our recent positive energy proof. (Fourth Prize, 1994 Gravity Research Foundation Essay.)Comment: 5 pages (Plain TeX), NCU-GR-94-QSL

    Another positivity proof and gravitational energy localizations

    Full text link
    Two locally positive expressions for the gravitational Hamiltonian, one using 4-spinors the other special orthonormal frames, are reviewed. A new quadratic 3-spinor-curvature identity is used to obtain another positive expression for the Hamiltonian and thereby a localization of gravitational energy and positive energy proof. These new results provide a link between the other two methods. Localization and prospects for quasi-localization are discussed.Comment: 14 pages REVTe

    Quasi-local Energy for Spherically Symmetric Spacetimes

    Full text link
    We present two complementary approaches for determining the reference for the covariant Hamiltonian boundary term quasi-local energy and test them on spherically symmetric spacetimes. On the one hand, we isometrically match the 2-surface and extremize the energy. This can be done in two ways, which we call programs I (without constraint) and II (with additional constraints). On the other hand, we match the orthonormal 4-frames of the dynamic and the reference spacetimes. Then, if we further specify the observer by requiring the reference displacement to be the timelike Killing vector of the reference, the result is the same as program I, and the energy can be positive, zero, or even negative. If, instead, we require that the Lie derivatives of the two-area along the displacement vector in both the dynamic and reference spacetimes to be the same, the result is the same as program II, and it satisfies the usual criteria: the energies are non-negative and vanish only for Minkowski (or anti-de Sitter) spacetime.Comment: 16 pages, no figure

    Ashtekar Variables in Classical General Realtivity

    Full text link
    This paper contains an introduction into Ashtekar's reformulation of General Relativity in terms of connection variables. To appear in "Canonical Gravity - From Classical to Quantum", ed. by J. Ehlers and H. Friedrich, Springer Verlag (1994).Comment: 31 Pages, Plain-Tex; Further comments were added, minor grammatical changes made and typos correcte

    Quasi-local energy-momentum and energy flux at null infinity

    Full text link
    The null infinity limit of the gravitational energy-momentum and energy flux determined by the covariant Hamiltonian quasi-local expressions is evaluated using the NP spin coefficients. The reference contribution is considered by three different embedding approaches. All of them give the expected Bondi energy and energy flux.Comment: 14 pages, accepted by Phys.Rev.

    On the energy of homogeneous cosmologies

    Full text link
    An energy for the homogeneous cosmological models is presented. More specifically, using an appropriate natural prescription, we find the energy within any region with any gravitational source for a large class of gravity theories--namely those with a tetrad description--for all 9 Bianchi types. Our energy is given by the value of the Hamiltonian with homogeneous boundary conditions; this value vanishes for all regions in all Bianchi class A models, and it does not vanish for any class B model. This is so not only for Einstein's general relativity but, moreover, for the whole 3-parameter class of tetrad-teleparallel theories. For the physically favored one parameter subclass, which includes the teleparallel equivalent of Einstein's theory as an important special case, the energy for all class B models is, contrary to expectation, negative.Comment: 11 pages, reformated with minor change

    How do novice and improver walkers move in their home environments? An open-sourced infant’s gait video analysis

    Get PDF
    Objective Natural independent walking mostly occurs during infant´s everyday explorations of their home environment. Gait characteristics of infant walkers at different developmental stages exist in literature, however, data has been only collected in laboratory environments, which may reduce gait variability, therefore mask differences between developmental stages of natural gait. The aim of the study was to provide the first data set of temporal and functional gait characteristics of novice and improver infant walkers in familiar environment conditions in their home. We hypothesised that familiar environment conditions may effectively demonstrate natural gait characteristics and real differences in gait variables differing between 2 groups of developing infant walkers. Methods In a cross-sectional design; we used open-source videos of infants in their home environments: twenty videos of 10 novice (5 girls, 5 boys, 7–12 months) and 10 improver (4 girls, 6 boys, 8–13 months) walkers were chosen from an open-source website. 2-D video gait analysis was undertaken for these parameters: falls frequency, frequency of stops, gait cadence, and time of stance phase, swing phase, and double support. Between groups comparison for novice versus improver was investigated by Mann-Whitney U tests (p ≤ 0.05) with determination of effect size of Pearson r correlation. Results Statistically significant differences between groups with large effect sizes were found for these parameters: falls frequency (p = 0.01, r = 0.56); cadence (p = 0.01, r = 0.57); stance phase duration of right leg (p < 0.01, r = 0.63); stance phase duration of left leg (p = 0.01, r = 0.56); and double support phase duration (p < 0.01, r = 0.69). Novices scored higher in comparison with improver walkers in all the parameters except cadence. Conclusions This study presents the first data set of functional and temporal gait parameters of novice and improver infant walkers in their home environments. As an addition to recent research, novice infants walk with lower cadence and higher falls frequency, stance phase time and double support in their familiar environments. With increasing experiences, infant´s cadence increases while the other parameters decrease

    The Hamiltonian boundary term and quasi-local energy flux

    Full text link
    The Hamiltonian for a gravitating region includes a boundary term which determines not only the quasi-local values but also, via the boundary variation principle, the boundary conditions. Using our covariant Hamiltonian formalism, we found four particular quasi-local energy-momentum boundary term expressions; each corresponds to a physically distinct and geometrically clear boundary condition. Here, from a consideration of the asymptotics, we show how a fundamental Hamiltonian identity naturally leads to the associated quasi-local energy flux expressions. For electromagnetism one of the four is distinguished: the only one which is gauge invariant; it gives the familiar energy density and Poynting flux. For Einstein's general relativity two different boundary condition choices correspond to quasi-local expressions which asymptotically give the ADM energy, the Trautman-Bondi energy and, moreover, an associated energy flux (both outgoing and incoming). Again there is a distinguished expression: the one which is covariant.Comment: 12 pages, no figures, revtex

    Mass and Spin of Poincare Gauge Theory

    Get PDF
    We discuss two expressions for the conserved quantities (energy momentum and angular momentum) of the Poincar\'e Gauge Theory. We show, that the variations of the Hamiltonians, of which the expressions are the respective boundary terms, are well defined, if we choose an appropriate phase space for asymptotic flat gravitating systems. Furthermore, we compare the expressions with others, known from the literature.Comment: 16 pages, plain-tex; to be published in Gen. Rel. Gra

    Dirac spinor fields in the teleparallel gravity: comment on "Metric-affine approach to teleparallel gravity"

    Full text link
    We show that the coupling of a Dirac spinor field with the gravitational field in the teleparallel equivalent of general relativity is consistent. For an arbitrary SO(3,1) connection there are two possibilities for the coupling of the spinor field with the gravitational field. The problems of consistency raised by Y. N. Obukhov and J. G. Pereira in the paper {\it Metric-affine approach to teleparallel gravity} [gr-qc/0212080] take place only in the framework of one particular coupling. By adopting an alternative coupling the consistency problem disappears.Comment: 8 pages, Latex file, no figures, to appear in the Phys. Rev. D as a Commen
    • …
    corecore